
Matthew MacDonald

Silverlight 2
Visual Essentials

Books for professionals By professionals®

Silverlight 2 Visual Essentials
Dear Reader,

This concise book explores what visual elements and visual programming functional-
ity Silverlight 2 has to offer. These visual elements are really the key to the appeal of
Silverlight, and so they are the focus of the book. Among the topics addressed are

• A solid introduction to all aspects of Silverlight where you build a simple
Silverlight project

• Silverlight’s layout manager and Silverlight elements
• The Silverlight event model
• The application model
• Shapes and geometries available to Silverlight developers
• Brushes and transforms
• A brief discussion of what you can do with animations in Silverlight

While there is some code, that is not the point of the book. Rather, it is to get you
to quickly understand what visual functionality is available and what programming
options are available, without getting bogged down in much code.

The text assumes that if you are a programmer, you have an understanding of
XAML. However, if you ignore the code, any decision maker who needs to get a better
understanding of what Silverlight can do, any layperson, or even an administrator can
come to grips with the visual elements of Silverlight.

Author of

M
acDonald

Silverlight 2 Visual Essentials

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain
the information you could get based on intensive research yourself or if you were to attend a
conference every other week—if only you had the time. They cover the concepts and techniques
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your
choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can’t afford to be without them.

User level:
Beginner–Intermediate

www.apress.com

232
PAgeS

Available as a
PDF Electronic Book
or Print On Demand

About firstPress
Apress's firstPress series is your source for understanding cutting-edge technology. Short,
highly focused, and written by experts, Apress's firstPress books save you time and effort. They
contain the information you could get based on intensive research yourself or if you were to
attend a conference every other week—if only you had the time. They cover the concepts and
techniques that will keep you ahead of the technology curve. Apress's firstPress books are real
books, in your choice of electronic or print-on-demand format, with no rough edges even when
the technology itself is still rough. You can't afford to be without them.

Silverlight 2 Visual Essentials

Dear Reader,

This concise book explores what visual elements and visual programming functionality
Silverlight 2 has to offer. These visual elements are really the key to the appeal of Silverlight,
and so they are the focus of the book. Among the topics addressed are

 A solid introduction to all aspects of Silverlight where you build a simple Silverlight project

 Silverlight’s layout manager and Silverlight elements

 The Silverlight event model

 The application model

 Shapes and geometries available to Silverlight developers

 Brushes and transforms

 A brief discussion of what you can do with animations in Silverlight

While there is some code, that is not the point of the book. Rather, it is to get you to quickly
understand what visual functionality is available and what programming options are available,
without getting bogged down in much code.

The text assumes that if you are a programmer, you have an understanding of XAML. However,
if you ignore the code, any decision maker who needs to get a better understanding of what
Silverlight can do, any layperson, or even an administrator can come to grips with the visual
elements of Silverlight.

Best Regards,

Matthew MacDonald

 Silverlight 2 Visual Essentials i

Contents
Chapter 1: Introducing Silverlight...1

Understanding Silverlight... 2

Silverlight vs. Flash... 6
Silverlight 1.0 and 2.0 ... 9
Silverlight and WPF .. 9

Silverlight and Visual Studio..12

Understanding Silverlight Web Sites .. 12
Creating a Silverlight Project .. 14
The Anatomy of a Silverlight Application.. 15
Creating a Simple Silverlight Page ... 18
Adding Event Handling Code ... 20
Browsing the Silverlight Class Libraries .. 23
Testing a Silverlight Application .. 27
Creating an ASP.NET Web Site with Silverlight Content.......................... 29

Silverlight Compilation and Deployment...34

Compiling a Silverlight Assembly .. 34
Deploying a Silverlight Assembly .. 36
The HTML Entry Page.. 38
The Application Manifest.. 46

The Last Word ...48

Chapter 2: Layout ...49

The Layout Containers ...49

The Panel Background .. 51

ii Silverlight 2 Visual Essentials

Borders .. 54

Simple Layout with the StackPanel..55

Layout Properties .. 58
Alignment.. 60
Margin ... 61
Minimum, Maximum, and Explicit Sizes ... 63

The Grid...66

Fine-Tuning Rows and Columns... 70
Nesting Layout Containers.. 72
Spanning Rows and Columns ... 74
Using the GridSplitter ... 74

Coordinate-Based Layout with the Canvas..75

The Page ..78

Scrolling .. 80
Scaling ... 81
Full Screen... 81

Navigation ...82

Loading Child User Controls .. 83
Hiding Elements .. 83

The Last Word ...84

Chapter 3: Dependency Properties and Routed Events.................85

Dependency Properties ...86

Defining and Registering a Dependency Property...................................... 87
Dynamic Value Resolution ... 90
Attached Properties ... 91

Routed Events..92

The Core Element Events.. 92
Event Bubbling.. 95

 Silverlight 2 Visual Essentials iii

Mouse Movements .. 96
Capturing the Mouse ... 97
Mouse Cursors... 98
Key Presses.. 99
Key Modifiers.. 100
Focus ... 101

The Last Word ...102

Chapter 4: Elements ... 103

The Silverlight Elements...103

Static Text ..106

Font Properties .. 108
Underlining.. 113
Runs... 114
Wrapping Text... 115

Content Controls ...117

The Content Property .. 119
Aligning Content ... 122
Buttons... 123
Tooltips.. 129

List Controls ..134

Text Controls ...138

Text Selection.. 138
The WatermarkedTextBox.. 140

Range-Based Controls ..141

Date Controls...143

The Last Word ...148

Chapter 5: The Application Model... 149

iv Silverlight 2 Visual Essentials

Application Events ..149

Application Startup.. 150
Application Shutdown... 151
Unhandled Exceptions... 151
XAML Resources.. 153

Application Tasks ..154

Accessing the Current Application ... 155
Initialization Parameters.. 155
Changing the Page... 159
Splash Screens... 163

Resources...164

Class Library Assemblies ..165

Using Resources in an Assembly .. 165
Downloading Assemblies on Demand .. 167

The Last Word ...168

Chapter 6: Shapes and Geometries .. 169

Basic Shapes..169

The Shape Classes ... 170
Rectangle and Ellipse .. 172
Sizing and Placing Shapes... 175
Line.. 179
Polyline.. 181
Polygon.. 183
Line Caps and Line Joins .. 187
Dashes ... 190

Paths and Geometries ...193

Line, Rectangle, and Ellipse Geometries .. 194
Combining Shapes with GeometryGroup ... 196
Curves and Lines with PathGeometry... 198

 Silverlight 2 Visual Essentials v

The Geometry Mini-Language.. 207
Clipping with Geometry.. 210

Exporting Clip Art...211

Expression Design... 211
Conversion... 213
Save or Print to XPS.. 214

The Last Word ...218

Chapter 7: Brushes and Transforms ... 219

Brushes ..219

Transparency...220

Making the Silverlight Control Transparent ... 221

Transforms ..221

The Last Word ...225

Chapter 8: Animation .. 227

Understanding Silverlight Animation ..228

The Rules of Animation .. 229

The Last Word ...231

Related Titles ... 232

Copyright ... 233

vi Silverlight 2 Visual Essentials

Silverlight 2 Visual Essentials
by Matthew MacDonald

Microsoft Silverlight is a cross-browser, cross-platform plug-in, similar to Flash,
that delivers rich interactive applications for the Web. Silverlight offers a flexible
programming model based largely on Windows Presentation Foundation (WPF);
it supports a number of different programming languages and techniques
(making it cross-platform) and all major browsers (providing cross-browser
support). There is lots of interest in Microsoft’s Flash killer, and several
conferences have seen heavy support for this exciting technology.
Little published information on this technology is available on the market now,
and so this introduction to the visual features and capabilities of Silverlight will
hopefully get you going quickly.
This concise book is meant to give you a sense of what you, as a programmer,
can expect from Silverlight in terms of what the user is going to see. The
emphasis here is on understanding what Silverlight has to offer. While there is
some code given, that is not the point of the book. The point is to be able to
quickly understand what functionality is available to you and what options you
might have without getting bogged down in much code.
The text assumes that you are a programmer and that you have an understanding
of XAML. However, if you ignore the code that exists in the book, then any
layperson, or even an administrator, can come to grips with the visual element of
Silverlight.

 Silverlight 2 Visual Essentials 1

Chapter 1: Introducing Silverlight
Silverlight is a framework for building rich, browser-hosted applications
that run on a variety of operating systems. Silverlight works its magic
through a browser plug-in. When you surf to a web page that includes
some Silverlight content, this browser plug-in runs, executes the code, and
renders that content in a specifically designated region of the page. The
important part is that the Silverlight plug-in provides a far richer
environment than the traditional blend of HTML and JavaScript that
powers ordinary web pages. Used carefully and artfully, you can create
Silverlight pages that have interactive graphics, use vector animations, and
play video and sound files.
If this all sounds familiar, it’s because the same trick has been tried before.
Several other technologies use a plug-in to stretch the bounds of the
browser, including Java, ActiveX, Shockwave, and (most successfully)
Adobe Flash. Although all these alternatives are still in use, none of them
has become the dominant platform for rich web development. Many of
them suffer from a number of problems, including installation headaches,
poor development tools, and insufficient compatibility with the full range
of browsers and operating systems. The only technology that’s been able to
avoid these pitfalls is Flash, which boasts excellent cross-platform support
and widespread adoption. However, Flash has only recently evolved from a
spunky multimedia player into a set of dynamic programming tools. It still
offers far less than a modern programming environment like .NET.
That’s where Silverlight fits into the picture. Silverlight aims to combine
the raw power and cross-platform support of Flash with a first-class
programming platform that incorporates the fundamental concepts of .NET.
At the moment, Flash has the edge over Silverlight because of its
widespread adoption and its maturity. However, Silverlight boasts a few
architectural features that Flash can’t match—most importantly, the fact

2 Silverlight 2 Visual Essentials

that it’s based on a scaled-down version of .NET’s common language
runtime (CLR) and allows developers to write client-side code using pure
C#.
In this chapter, you’ll take your first tour of the Silverlight world. You’ll
see how Silverlight applications are structured, and you’ll learn to create
one in Visual Studio. Lastly, you’ll peer under the covers to see how
Silverlight applications are compiled and deployed to the Web.

Understanding Silverlight
Silverlight uses a familiar technique to go beyond the capabilities of
standard web pages: a lightweight browser plug-in.
The advantage of the plug-in model is that the user needs to install just a
single component to see content created by a range of different people and
companies. Installing the plug-in requires a small download and forces the
user to confirm the operation in at least one security dialog box (and
usually more). It takes a short but definite amount of time, so it’s an
obvious inconvenience. However, once the plug-in is installed, the browser
can process any content that uses the plug-in seamlessly, with no further
prompting.

 Silverlight 2 Visual Essentials 3

Note Silverlight is designed to overcome the limitations of ordinary
HTML to allow developers to create more graphical and interactive
applications. However, Silverlight isn’t a way for developers to break out of
the browser’s security sandbox. For the most part, Silverlight applications
are limited in equivalent ways to ordinary web pages. For example, a
Silverlight application is allowed to create and access files, but only those
files that are stored in a special walled-off isolated storage area.
Conceptually, isolated storage works like the cookies in an ordinary web
page. Files are separated by web site and the current user, and size is
severely limited.

Figure 1-1 shows two views of a page with Silverlight content. On the top
is the page you’ll see if you don’t have the Silverlight plug-in installed. At
this point, you can click the Get Microsoft Silverlight picture to be taken to
Microsoft’s web site, where you’ll be prompted to install the plug-in and
then sent back to the original page. On the bottom is the page you’ll see
once the Silverlight plug-in is installed.

4 Silverlight 2 Visual Essentials

Figure 1-1. Installing the Silverlight plug-in

 Silverlight 2 Visual Essentials 5

6 Silverlight 2 Visual Essentials

Silverlight vs. Flash
The most successful browser plug-in is Adobe Flash, which is installed on
over 90 percent of the world’s web browsers. Flash has a long history that
spans more than ten years, beginning as a straightforward tool for adding
animated graphics and gradually evolving into a platform for developing
interactive content.
It’s perfectly reasonable for .NET developers to create web sites that use
Flash content. However, doing so requires a separate design tool and a
completely different programming language (ActionScript) and
programming environment (Flex). Furthermore, there’s no straightforward
way to integrate Flash content with server-side .NET code. For example,
creating Flash applications that call .NET components is awkward at best.
Using server-side .NET code to render Flash content (for example, a
custom ASP.NET control that spits out a Flash content region) is far more
difficult.

Note There are some third-party solutions that help break down the
barrier between ASP.NET and Flash. One example is the innovative
SWFSource.NET (http://www.activehead.com/SWFSource.aspx), which
provides a set of .NET classes that allow you to dynamically generate Flash
(SWF) files. However, these tools work at a relatively low level, falling far
short of a full development platform.

Silverlight aims to give .NET developers a better option for creating rich
web content. Silverlight provides a browser plug-in with many similar
features to Flash, but one that’s designed from the ground up for .NET.
Silverlight natively supports the C# language and embraces a range of
.NET concepts. As a result, developers can write client-side code for
Silverlight in the same language they use for server-side code (such as C#

http://www.activehead.com/SWFSource.aspx

 Silverlight 2 Visual Essentials 7

and VB) and use many of the same abstractions (including streams,
controls, collections, generics, and LINQ).
The Silverlight plug-in has an impressive list of features, some of which
are shared in common with Flash, and a few of which are entirely new and
even revolutionary. Here are some highlights:
 Widespread browser support: It’s too early to tell how well the Silverlight

browser works on different platforms. Currently, the beta builds of Silverlight
2.0 work on Windows Vista and Windows XP (in the PC universe) and OS X
10.4.8 or later (in the Mac world). The minimum browser versions that
Silverlight 2.0 supports are Internet Explorer 6, Firefox 1.5.0.8, and Safari
2.0.4. Although Silverlight 2.0 doesn’t currently work on Linux, the Mono
team is creating an open source Linux implementation of Silverlight 1.0 and
Silverlight 2.0. This project is known as Moonlight, and it’s being developed
with key support from Microsoft. To learn more, visit http://www.mono-
project.com/Moonlight.

 Lightweight download: In order to encourage adoption, Silverlight is
installed with a small-size setup (about 4MB) that’s easy to download. That
allows it to provide an all-important “frictionless” setup experience, much
like Flash (but quite different from Java).

 2D drawing: Silverlight provides a rich model for 2D drawing. Best of all,
the content you draw is defined as shapes and paths, so you can manipulate
this content on the client side. You can even respond to events (like a mouse
click on a portion of a graphic), which makes it easy to add interactivity to
anything you draw.

 Controls: Developers don’t want to reinvent the wheel, so Silverlight is
stocked with a few essentials, including buttons, text boxes, lists, and a grid.
Best of all, these basic building blocks can be restyled with custom visuals if
you want all of the functionality but none of the stock look.

 Animation: Silverlight has a time-based animation model that lets you define
what should happen and how long it should take. The Silverlight plug-in
handles the sticky details, like interpolating intermediary values and
calculating the frame rate.

http://www.mono-project.com/Moonlight
http://www.mono-project.com/Moonlight
http://www.mono-project.com/Moonlight

8 Silverlight 2 Visual Essentials

 Media: Silverlight provides playback of Windows Media Audio (WMA),
Windows Media Video (WMV7 through WMV9), MP3 audio, and VC-1
(which supports high definition). You aren’t tied to the Windows Media
Player ActiveX control or browser plug-in—instead, you can create any front
end you want, and you can even show video in full-screen mode. Microsoft
also provides a free companion hosting service (at
http://silverlight.live.com) that gives you space to store media files.
Currently, it offers a generous 10GB.

 The CLR: Most impressively, Silverlight includes a scaled-down version of
the CLR, complete with an essential set of core classes, a garbage collector, a
just-in-time (JIT) compiler, support for generics, threading, and so on. In
many cases, developers can take code written for the full .NET CLR and use
it in a Silverlight application with only moderate changes.

 Networking: Silverlight applications can call old-style ASP.NET web
services (ASMX) or Windows Communication Foundation (WCF) web
services. They can also send manually created XML requests over HTTP.
This gives developers a great way to combine rich client-side code with
secure server-side routines.

 Data binding: Although it’s not as capable as in its big brother, Windows
Presentation Foundation (WPF), Silverlight data binding provides a
convenient way to display large amounts of data with minimal code. You can
pull your data from XML or in-memory objects, giving you the ability to call
a web service, receive a collection of objects, and display their data in a web
page—often with just a couple of lines of code.

Of course, it’s just as important to note what Silverlight doesn’t include.
Silverlight is a new technology that’s evolving rapidly, and it’s full of
stumbling blocks for developers who are used to relying on .NET’s rich
libraries of prebuilt functionality. Prominent gaps include lack of database
support (there’s no ADO.NET), no support for 3D drawing, no printing, no
command model, and few rich controls like trees and menus (although
many developers and component companies are building their own). All of

http://silverlight.live.com

 Silverlight 2 Visual Essentials 9

these features are available in Windows-centric WPF applications, and they
may someday migrate to the Silverlight universe—or not.

Silverlight 1.0 and 2.0
Silverlight exists in two versions:
 The first version, Silverlight 1.0, is a relatively modest technology. It includes

the 2D drawing features and the media playback features. However, it doesn’t
include the CLR engine or support for .NET languages, so any code you write
must use JavaScript.

 The second version, Silverlight 2.0, adds the .NET-powered features that
have generated the most developer excitement. It includes the CLR, a subset
of .NET Framework classes, and a user interface model based on WPF (as
described in the next section, “Silverlight and WPF”).

Many developers consider Silverlight 2.0 to be the real first release of the
Silverlight platform. It’s the only version you’ll consider in this book.

Note At present, Silverlight is only on a fraction of computers.
However, Microsoft is convinced that if compelling content exists for
Silverlight, users will download the plug-in. A number of factors support this
argument. Flash grew dramatically in a short space of time, and Microsoft
has obvious experience with other web-based applications that have started
small and eventually gained wide adoption. (Windows Messenger comes to
mind, along with numerous ActiveX plug-ins for tasks ranging from
multiuser coordination on MSN Games to Windows verification on MSDN.)

Silverlight and WPF
One of the most interesting aspects of Silverlight is the fact that it borrows
the model WPF uses for rich, client-side user interfaces.
WPF is a next-generation technology for creating Windows applications. It
was introduced in .NET 3.0 as the successor to Windows Forms. WPF is

10 Silverlight 2 Visual Essentials

notable because it not only simplifies development with a powerful set of
high-level features, but also increases performance by rendering everything
through the DirectX pipeline. To learn about WPF, you can refer to another
of my books, Pro WPF in C# 2008: Windows Presentation Foundation
with .NET 3.5, Second Edition (Apress, 2008).
Silverlight obviously can’t duplicate the features of WPF, because many of
them rely deeply on the capabilities of the operating system, including
Windows-specific display drivers and DirectX technology. However, rather
than invent an entirely new set of controls and classes for client-side
development, Silverlight uses a subset of the WPF model. If you’ve had
any experience with WPF, you’ll be surprised to see how closely
Silverlight resembles its bigger brother. Here are a few common details:
 To define a Silverlight user interface (the collection of elements that makes

up a Silverlight content region), you use XAML markup, just as you do with
WPF. You can even map data to your display using the same data binding
syntax.

 Silverlight borrows many of the same basic controls from WPF, along with
the same styling system (for standardizing and reusing formatting) and a
similar templating mechanism (for changing the appearance of standard
controls).

 To draw 2D graphics in Silverlight, you use shapes, paths, transforms,
geometries, and brushes, all of which closely match their WPF equivalents.

 Silverlight provides a declarative animation model that’s based on
storyboards and works in the same way as WPF’s animation system.

 To show video or play audio files, you use the MediaElement class, as you do
in WPF.

 Silverlight 2 Visual Essentials 11

Microsoft has made no secret about its intention to continue to expand the
capabilities of Silverlight by drawing from the full WPF model. In future
Silverlight releases, you’re likely to find that Silverlight borrows more and
more features from WPF. This trend is already on display with the shift
from Silverlight 1.0 to Silverlight 2.0.
In other words, Silverlight is a .NET-based Flash competitor. It aims to
compete with Flash today, but provide a path to far more features in the
future. Unlike the Flash development model, which is limited in several
ways due to the way it’s evolved over the years, Silverlight is a starting-
from-scratch attempt that’s thoroughly based on .NET and WPF, and will
therefore allow .NET developers to be far more productive. In many ways,
Silverlight is the culmination of two trends: the drive to extend web pages
to incorporate more and more rich-client features, and the drive to give the
.NET Framework a broader reach.

Note Understanding XAML is critical to Silverlight application design,
as it will help you learn key Silverlight concepts and ensure that you get the
markup you really want. More importantly, a host of tasks are only
possible—or are far easier to accomplish—with handwritten XAML, including
wiring up event handlers, defining resources, creating control templates,
writing data binding expressions, and defining animations. In the future,
most Silverlight developers will probably use a combination of techniques,
laying out some of their user interface with a design tool (Visual Studio or
Expression Blend) and then fine-tuning it by editing the XAML markup by
hand. However, the support for Silverlight in the current generation of
design tools is limited and changing rapidly. As a result, you’ll probably find
yourself shouldering using tools to create key content (for example,
complex graphics), while adding most of the controls by hand.

12 Silverlight 2 Visual Essentials

Note WPF is not completely cut off from the easy deployment world of
the Web. WPF allows developers to create browser-hosted applications
called XAML Browser Applications (XBAPs). These applications download
seamlessly, cache locally, and run directly inside the browser window, all
without security prompts. However, although XBAPs run in Internet Explorer
and Firefox, they are still a Windows-only technology, unlike Silverlight.

Silverlight and Visual Studio
Although it’s technically possible to create the files you need for a
Silverlight application by hand, professional developers always use a
development tool. If you’re a graphic designer, that tool is likely to be
Microsoft Expression Blend 2.5, a graphically rich design package. If
you’re a developer, you’ll probably start with Visual Studio 2008 instead.
Because both tools are equally at home with the Silverlight 2.0 application
model, you can easily create a workflow that incorporates both of them.
For example, a developer could create a basic user interface with Visual
Studio and then hand it off to a crack design team, which would then polish
it up with custom graphics in Expression Blend. When the facelift is
finished, they’d deliver the project back to the developer, who could then
continue writing and refining code in Visual Studio.

Note Before you can use Visual Studio 2008 to create Silverlight
applications, you need to install a set of extensions for Silverlight
development.

Understanding Silverlight Web Sites
There are two types of Silverlight web sites that you can create in Visual
Studio:

 Silverlight 2 Visual Essentials 13

 Ordinary HTML web site: In this case, the entry point to your Silverlight
application is a basic HTML file that includes a Silverlight content region.

 ASP.NET web site: In this case, Visual Studio creates two projects—one to
contain the Silverlight application files, and one to hold the server-side
ASP.NET web site that will be deployed alongside your Silverlight files. The
entry point to your Silverlight application can be an ordinary HTML file or an
ASP.NET web form that also includes server-generated content.

No matter which option you choose, your Silverlight application will run
the same way—the client browser will receive an HTML web page, that
HTML page will include a Silverlight content region, and the Silverlight
code will run on the local computer, not the web server. However, the
ASP.NET web approach makes it easier to mix ASP.NET and Silverlight
content. This is usually a better approach in the following cases:
 You want to create a web application that combines ASP.NET web pages

with Silverlight-enhanced pages.
 You want to generate Silverlight content indirectly, using ASP.NET web

controls.
 You want to create a Silverlight application that calls a web service, and you

want to design the web service at the same time (and deploy it to the same
web server).

If you decide to create an ASP.NET web site, your application’s
requirements will change. Silverlight content can be served by any web
server, because it’s sent directly to the web browser and processed on the
client side. ASP.NET content runs on the web server, which must have the
ASP.NET engine installed.

14 Silverlight 2 Visual Essentials

ADDING SILVERLIGHT CONTENT TO AN EXISTING WEB
SITE

A key point to keep in mind when considering the Silverlight
development model is that in many cases you’ll use Silverlight to
augment the existing content of your web site, which will still include
generous amounts of HTML, CSS, and JavaScript. For example, you
might add Silverlight content that shows an advertisement or allows
an enhanced experience for a portion of a web site (such as playing a
game, completing a survey, interacting with a product, taking a
virtual tour, and so on). Your Silverlight pages may present content
that’s already available in your web site in a more engaging way, or
they may represent a value-added feature for users who have the
Silverlight plug-in.

Of course, it’s also possible to create a Silverlight-only web site,
which is a somewhat more daring approach. The key drawback is that
Silverlight is still relatively new, and it doesn’t support legacy clients
(most notably, it currently has no support for users of Windows ME
and Windows 98, and Internet Explorer–only support for Windows
2000). As a result, it doesn’t have nearly the same reach as ordinary
HTML. Many businesses that are adopting Silverlight are using it to
distinguish themselves from other online competitors with cutting-
edge content.

Creating a Silverlight Project
Now that you understand the two types of Silverlight web sites, you’re
ready to create a new Silverlight application by following these steps:
1. Select File New Project in Visual Studio, choose the Visual C# group of

project types, and select the Silverlight Application template. As usual, you
need to pick a project name and a location on your hard drive before clicking
OK to create the project.

 Silverlight 2 Visual Essentials 15

2. At this point, Visual Studio will prompt you to choose whether you want to
create an ordinary HTML web site or a full-fledged ASP.NET web site that
can run server-side code (see Figure 1-2). For now, choose the second option
to create an ordinary web site and click OK.

Figure 1-2. Choosing the type of web site

The Anatomy of a Silverlight Application
Every Silverlight project starts with a small set of essential files, as shown
in Figure 1-3.

16 Silverlight 2 Visual Essentials

Figure 1-3. A Silverlight project

All the files that end with the extension .xaml use a flexible markup
standard called XAML. All the files that end with the extension .cs hold
the C# source code that powers your application.
Here’s a rundown of the files shown in Figure 1-3:
 App.xaml and App.xaml.cs: These files allow you to configure your

Silverlight application. They allow you to define resources that will be made
available to all the pages in your application, and they allow you to react to
application events such as startup, shutdown, and error conditions. In a newly
generated project, the startup code in the App.xaml.cs file specifies that your
application should begin by showing Page.xaml.

 Page.xaml: This file defines the user interface (the collection of controls,
images, and text) that will be shown for your first page. Technically,
Silverlight pages are user controls. A Silverlight application can contain as
many pages as you need—to add more, simply choose Project Add New
Item, pick the Silverlight User Control template, choose a file name, and click
Add.

 Silverlight 2 Visual Essentials 17

 Page.xaml.cs: This file includes the code that underpins your first page,
including the event handlers that react to user actions

Tip Unlike App.xaml, the name of your pages is not important.
However, if you simply renaming a XAML file in Solution Explorer, you’ll still
keep the old class name. (For example, if you rename Page.xaml to
Page1.xaml, you’ll end up with a file named Page1.xaml that defines a class
named Page.xaml.) To correct this discrepancy and make sure your file
names and code are consistent, you can change the class name by hand
(using XAML), or you can simply delete the existing file and add a new one
with the right name.

Along with these four essential files, there are a few more ingredients that
you’ll only find if you dig around. Under the Properties node in Solution
Explorer, you’ll find a file named AppManifest.xml, which lists the
assemblies that your application uses. You’ll also find a file named
AssemblyInfo.cs that contains information about your project (such as its
name, version, and publisher), which is embedded into your Silverlight
assembly when it’s compiled. Neither of these files should be edited by
hand—instead, they’re modified by Visual Studio when you add references
or set projects properties.
Lastly, the gateway to your Silverlight application is an automatically
generated but hidden HTML file named TestPage.html (see Figure 1-4). To
see this file, click the Show All Files icon at the top of the Solution
Explorer window, and expand the ClientBin folder (which is where your
application is compiled). You’ll take a closer look at the content of the
TestPage.html file a bit later in this chapter.

18 Silverlight 2 Visual Essentials

Figure 1-4. The HTML entry page

Creating a Simple Silverlight Page
As you’ve already learned, every Silverlight page includes a markup
portion that defines the visual appearance (the XAML file) and a source
code file that contains event handlers. To customize your first Silverlight
application, you simply need to open the Page.xaml file and begin adding
markup.
Visual Studio gives you two ways to look at every XAML file—it displays
a visual preview (known as the design surface) or the underlying markup
(known as the source view). By default, Visual Studio shows both parts,

 Silverlight 2 Visual Essentials 19

stacked one atop the other. Figure 1-5 shows this view and points out the
buttons you can use to change your vantage point.

Figure 1-5. Viewing XAML pages

As you’ve no doubt guessed, you can start designing your XAML page by
dragging controls from the Toolbox and dropping them onto the design
surface. However, this convenience won’t save you from learning the full
intricacies of XAML. In order to organize your elements into the right
layout containers, change their properties, wire up event handlers, and use
Silverlight features like animation, styles, templates, and data binding,
you’ll need to edit the XAML markup by hand.
To get started, you can try creating the page shown here, which defines a
block of text and a button. The portions in bold have been added to the
basic page template that Visual Studio generated when you created the
project.

20 Silverlight 2 Visual Essentials

<UserControl x:Class="SilverlightApplication1.Page"
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="100">

 <Grid Name="LayoutRoot" Background="White">
 <StackPanel>
 <TextBlock Name="lblMessage" Text="Hello world." Margin="5">
 </TextBlock>
 <Button Name="cmdClickMe" Content="Click Me!" Margin="5"></Button>
 </StackPanel>
 </Grid>
</UserControl>

This creates a page that has a stacked arrangement of two elements. On the
top is a block of text with a simple message. Underneath it is a button.

Note In Silverlight terminology, each graphical widget that appears in
a user interface and is represented by a .NET class is called an element. The
term control is generally reserved for elements that receive focus and allow
user interaction. For example, a TextBox is a control, but a TextBlock is not.

Adding Event Handling Code
You attach event handlers to the elements in your page using attributes,
which is the same approach that developers take in WPF, ASP.NET, and
JavaScript. For example, the Button element exposes an event named Click
that fires when the button is triggered with the mouse or keyboard. To react
to this event, you add the Click attribute to the Button element, and set it to
the name of a method in your code:
<Button Name="cmdClickMe" Click="cmdClickMe_Click" Content="Click Me!"
 Margin="5"></Button>

http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/winfx/2006/xaml

 Silverlight 2 Visual Essentials 21

Tip Although it’s not required, it’s a common convention to name
event handler methods in the form ElementName_EventName. If the element
doesn’t have a defined name (presumably because you don’t need to
interact with it in any other place in your code), consider using the name it
would have.

This example assumes that you’ve created an event handling method
named cmd_ClickMe. Here’s what it looks like in the Page.xaml.cs file:
private void cmdClickMe_Click(object sender, RoutedEventArgs e)
{
 lblMessage.Text = "Goodbye, cruel world.";
}

You can’t coax Visual Studio into creating an event handler by double-
clicking an element or using the Properties window (as you can in other
types of projects). However, once you’ve added the event handler, you can
use IntelliSense to quickly assign it to the right event. Begin by typing in
the attribute name, followed by the equal sign. At this point, Visual Studio
will pop up a menu that lists all the methods that have the right syntax to
handle this event and currently exist in your code-behind class, as shown in
Figure 1-6. Simply choose the right event handling method.

22 Silverlight 2 Visual Essentials

Figure 1-6. Attaching an event handler

It’s possible to use Visual Studio to create and assign an event handler in
one step by adding an event attribute and choosing the <New Event
Handler> option in the menu.

Tip To jump quickly from the XAML to your event handling code,
right-click the appropriate event attribute and choose Navigate to Event
Handler.

 Silverlight 2 Visual Essentials 23

You can also connect an event with code. The place to do it is the
constructor for your page, after the call to InitializeComponent(), which
initializes all your controls. Here’s the code equivalent of the XAML
markup shown previously:
public Page()
{
 InitializeComponent();
 cmdClickMe.Click += cmdClickMe_Click;
}

The code approach is useful if you need to dynamically create a control and
attach an event handler at some point during the lifetime of your window.
By comparison, the events you hook up in XAML are always attached
when the window object is first instantiated. The code approach also allows
you to keep your XAML simpler and more streamlined, which is perfect if
you plan to share it with nonprogrammers, such as a design artist. The
drawback is a significant amount of boilerplate code that will clutter up
your code files.
If you want to detach an event handler, code is your only option. You can
use the -= operator, as shown here:
cmdClickMe.Click -= cmdClickMe_Click;

It is technically possible to connect the same event handler to the same
event more than once. This is usually the result of a coding mistake. (In this
case, the event handler will be triggered multiple times.) If you attempt to
remove an event handler that’s been connected twice, the event will still
trigger the event handler, but just once.

Browsing the Silverlight Class Libraries
In order to write practical code, you need to know quite a bit about the
classes you have to work with. That means acquiring a thorough
knowledge of the core class libraries that ship with Silverlight.

24 Silverlight 2 Visual Essentials

Silverlight includes a subset of the classes from the full .NET Framework.
Although it would be impossible to cram the entire .NET Framework into
Silverlight—after all, it’s a 4MB download that needs to support a variety
of browsers and operating systems—Silverlight includes a remarkable
amount of functionality.
The Silverlight version of the .NET Framework is simplified in two ways.
First, it doesn’t provide the sheer number of types you’ll find in the full
.NET Framework. Second, the classes that it does include often don’t
provide the full complement of constructors, methods, properties, and
events. Instead, Silverlight keeps only the most practical members of the
most important classes, which leaves it with enough functionality to create
surprisingly compelling code.

Note The Silverlight classes are designed to have public interfaces
that resemble their full-fledged counterparts in the .NET Framework.
However, the actual plumbing of these classes is quite different. All the
Silverlight classes have been rewritten from the ground up to be as
streamlined and efficient as possible.

Before you start doing any serious Silverlight programming, you might like
to browse the Silverlight version of the .NET Framework. One way to do
so is to open a Silverlight project, and then show the Object Browser in
Visual Studio (choose View Object Browser). Along with the assembly
for the code in your project, you’ll see the following Silverlight assemblies
(shown in Figure 1-7):

 Silverlight 2 Visual Essentials 25

 mscorlib.dll: This assembly is the Silverlight equivalent of the mscorlib.dll
assembly that includes the most fundamental parts of the .NET Framework.
The Silverlight version includes core data types, exceptions, and interfaces in
the System namespace, ordinary and generic collections, file management
classes, and support for globalization, reflection, resources, debugging, and
multithreading.

 System.dll: This assembly contains additional generic collections, classes for
dealing with URIs, and classes for dealing with regular expressions.

 System.Core.dll: This assembly contains support for LINQ. The name of the
assembly matches the full .NET Framework, which implements new .NET
3.5 features in an assembly named System.Core.dll.

 System.Windows.dll: This assembly includes many of the classes for
building Silverlight user interfaces, including basic elements, shapes and
brushes, classes that support animation and data binding, and a version of the
OpenFileDialog that works with isolated storage.

 System.Windows.Controls.dll: This assembly defines the Silverlight
controls—elements that have support user interaction and use a flexible
template model, which allows you to supply new visuals without rewriting a
control’s built-in functionality.

 System.Windows.Controls.Extended.dll: This assembly defines controls
that are specialized for Silverlight or aren’t based on WPF at all. For
example, this assembly includes Silverlight’s Calendar and
WatermarkedTextBox controls, neither of which is present in WPF.

 System.Windows.Browser.dll: This assembly contains classes for
interacting with HTML elements.

 System.Xml.core.dll: This assembly includes the bare minimum classes you
need for XML processing: XmlReader and XmlWriter.

26 Silverlight 2 Visual Essentials

Figure 1-7. Silverlight assemblies in the Object Browser

Note Some of the members in the Silverlight assemblies are only
available to .NET Framework code, and aren’t callable from your code.
These members are marked with the SecurityCritical attribute. However,
this attribute does not appear in the Object Browser, so you won’t be able
to determine whether a specific feature is usable in a Silverlight application
until you try to use it. (If you attempt to use a member that has the
SecurityCritical attribute, you’ll get a SecurityException.) For example,
Silverlight applications are only allowed to access the file system through
the isolated storage API. For that reason, the constructor for the FileStream
class is decorated with the SecurityCritical attribute.

 Silverlight 2 Visual Essentials 27

Testing a Silverlight Application
You now have enough to test your Silverlight project. When you run a
Silverlight application, Visual Studio launches your default web browser
and navigates to the hidden browser entry page, named TestPage.html. The
test page creates a new Silverlight control and initializes it using the
markup in Page.xaml.

Note Visual Studio sets TestPage.html to be the start page for your
project. As a result, when you launch your project, this page will be loaded
in the browser. You can choose a different start page by right-clicking an
HTML file in Solution Explorer and choosing Set As Start Page.

Figure 1-8 shows the previous example at work. When you click the
button, the event handling code runs and the text changes. This process
happens entirely on the client—there is no need to contact the server or
post back the page, as there is in a server-side programming framework
like ASP.NET. All the Silverlight code is executed on the client side by the
scaled down version of .NET that’s embedded in the Silverlight plug-in.

28 Silverlight 2 Visual Essentials

Figure 1-8. Running a Silverlight application (in Firefox)

If you’re hosting your host Silverlight content in an ordinary web site (with
no server-side ASP.NET), Visual Studio won’t use its integrated web
server during the testing process. Instead, it simply opens the HTML entry
page for your Silverlight project in your browser. (You can see this in the
address bar in Figure 1-7.)
In some situations, this behavior could cause discrepancies between your
test environment and your deployed environment, which will use a full-

 Silverlight 2 Visual Essentials 29

fledged web server that serves pages over HTTP. The most obvious
difference is the security context—in other words, you could configure
your web browser to allow local web pages to perform actions that remote
web content can’t. In practice, this isn’t often a problem, because
Silverlight always executes in a stripped-down security context and doesn’t
include any extra functionality for trusted locations. This simplifies the
Silverlight development model and ensures that features won’t work in
certain environments and break in others. However, when production
testing a Silverlight application, it’s best to create an ASP.NET test web
site (as described in the next section) or—even better—deploy your
Silverlight application to a test web server.

Creating an ASP.NET Web Site with Silverlight Content
Although Silverlight does perfectly well on its own, you can also develop,
test, and deploy it as part of an ASP.NET web site. Here’s how to create a
Silverlight project and an ASP.NET web site that uses it in the same
solution:

1. Select File New Project in Visual Studio, choose the Visual C#
group of project types, and select the Silverlight Application template. It’s
a good idea to use the Create directory for solution option, so you can
group together the two projects that Visual Studio will create—one for the
Silverlight assembly and one for ASP.NET web site.

2. Once you’ve picked the solution name and project name, click OK to
create it.

3. When asked whether you want to create a test web, choose the first option,
Add a new Web. You’ll also need to supply a project name for the
ASP.NET web site. By default, it’s your project name with the added text
_Web, as shown in Figure 1-9. Finally, click OK to create the solution.

30 Silverlight 2 Visual Essentials

Figure 1-9. Creating an ASP.NET web site to host Silverlight content

There are two ways to integrate Silverlight content into an ASP.NET
application:
 Create HTML files with Silverlight content: You place these files in your

ASP.NET web site folder, just as you would with any other ordinary HTML
file. The only limitation of this approach is that your HTML file obviously
can’t include ASP.NET controls, because it won’t be processed on the server.

 Silverlight 2 Visual Essentials 31

 Place Silverlight content inside an ASP.NET web form: To pull this trick
off, you need the help of the Xaml web control. You can also add other
ASP.NET controls to different regions of the page. The only disadvantage to
this approach is that the page is always processed on the server. If you aren’t
actually using any server-side ASP.NET content, this creates an extra bit of
overhead that you don’t need when the page is first requested.

Of course, you’re also free to mingle both of these approaches, and use
Silverlight content in dedicated HTML pages and inside ASP.NET web
pages in the same site. When you create a Silverlight project with an
ASP.NET web site, you’ll start with both. For example, if your Silverlight
project is named SilverlightApplication1, you can use
SilverlightApplication1TestPage.html or
SilverlightApplication1TestPage.aspx. The HTML file is identical to the
test page in the ordinary Silverlight-only solution you saw earlier. The
.aspx file is an ASP.NET web form that uses ASP.NET’s Xaml web control
to show your Silverlight application. The end result is the same, but the
Silverlight control creates the test page markup dynamically, when it’s
processed on the server. (This extra step gives you a chance to use your
own server-side code to perform other tasks when the page is initially
requested, before the Silverlight application is downloaded and launched.)
Figure 1-10 shows how a Silverlight and ASP.NET solution starts out.
Along with the two test pages, the ASP.NET web site also includes a
Default.aspx page (which can be used as the entry point to your ASP.NET
web site) and web.config (which allows you to configure various web site
settings).

32 Silverlight 2 Visual Essentials

Figure 1-10. Creating an ASP.NET web site to host Silverlight
content

Silverlight and ASP.NET provide essentially the same debugging
experience as a Silverlight-only solution. When you run the solution,
Visual Studio compiles both projects and copies the Silverlight assembly to
the ClientBin folder in the ASP.NET web site. (This is similar to assembly
references—if an ASP.NET web site references a private DLL, Visual
Studio automatically copies this DLL to the Bin folder.) Once both projects
are compiled, Visual Studio looks to the startup project (which is the
ASP.NET web site) and looks for the start page (which is
SilverlightApplication1TestPage.aspx). It then launches the default
browser and navigates to the start page.

 Silverlight 2 Visual Essentials 33

The difference is that it doesn’t request the start page directly from the file
system. Instead, it communicates with its built-in test web server. This web
server automatically loads up on a randomly chosen port. It acts like a
scaled-down version of IIS, but accepts requests only from the local
computer. This gives you the ease of debugging without needing to
configure IIS virtual directories. Figure 1-11 shows the same Silverlight
application you considered earlier, but hosted by ASP.NET.

Figure 1-11. An ASP.NET page

To navigate to a different page from the ASP.NET project, you can type in
the address bar of the browser. Or, you can change the startup page by
right-clicking the page you want to use and choosing Set As Start Page.

Note Remember, when building a Silverlight and ASP.NET solution,
you add all your Silverlight files and code to the Silverlight project. The
ASP.NET web site consumes the final, compiled Silverlight assembly and
makes it available through one or more of its web pages.

34 Silverlight 2 Visual Essentials

Silverlight Compilation and Deployment
Now that you’ve seen how to create a basic Silverlight project, add a page
with elements and code, and run your application, it’s time to dig a bit
deeper. In this section, you’ll see how your Silverlight is transformed from
a collection of XAML files and source code into a rich browser-based
application.

Compiling a Silverlight Assembly
When you compile a Silverlight project, Visual Studio uses the same
csc.exe compiler that you use for full-fledged .NET applications. However,
it references a different set of assemblies and it passes in the command-line
argument nostdlib, which prevents the C# compiler from using the
standard library (the core parts of the .NET Framework that are defined in
mscorlib.dll). In other words, Silverlight applications can be compiled like
normal .NET applications written in standard C#, just with a more limited
set of class libraries to draw on. The Silverlight compilation model has a
number of advantages, including easy deployment and vastly improved
performance when compared to ordinary JavaScript.
Your compiled Silverlight assembly includes the compiled code and the
XAML documents for every page in your application, which are embedded
in the assembly as resources. This ensures that there’s no way for your
event handling code to become separated from the user interface markup it
needs. Incidentally, the XAML is not compiled in any way (unlike WPF,
which converts it into a more optimized format called BAML).

 Silverlight 2 Visual Essentials 35

Your Silverlight project is compiled into a DLL file named after your
project. For example, if you have a project named SilverlightApplication1,
the csc.exe compiler will create the file SilverlightApplication1.dll. The
project assembly is dumped into a ClientBin folder in your project
directory, along with a few other important files:
 A PDB file: This file contains information required for Visual Studio

debugging. It’s named after your project assembly (for example,
SilverlightApplication1.pdb).

 AppManifest.xaml: This file lists assembly dependencies.
 Dependent assemblies: The ClientBin folder contains the assemblies that

your Silverlight project uses, provided these assemblies have the Copy Local
property set to true. Assemblies that are a core part of Silverlight have Copy
Local set to False, because they don’t need to deployed with your application.
(You can change the Copy Local setting by expanding the References node in
Solution Explorer, selecting the assembly, and using the Properties window.).

 TestPage.html: This is the entry page that the user requests to start your
Silverlight application.

 A XAP file: This is a Silverlight package that contains everything you need
to deploy your Silverlight application, including the application manifest, the
project assembly, and any other assemblies that your application uses.

Of course, you can change the assembly name, the default namespace
(which is used when you add new code files), and the XAP file name using
the Visual Studio project properties (see Figure 1-12). Just double-click the
Properties node in Solution Explorer.

36 Silverlight 2 Visual Essentials

Figure 1-12. Project properties in Visual Studio

Deploying a Silverlight Assembly
Once you understand the Silverlight compilation model, it’s a short step to
understanding the deployment model. The XAP file is the key piece. It
wraps the units of your application (the application manifest and the
assemblies) into one neat container.
Technically, the XAP file is a ZIP archive. To verify this, rename a XAP
file like SilverlightApplication1.xap to SilverlightApplication1.xap.zip.
You can then open the archive and view the files inside. Figure 1-13 shows
the contents of the XAP file for the simple example shown earlier in this
chapter.

 Silverlight 2 Visual Essentials 37

Figure 1-13. The contents of a XAP file

The XAP file system has two obvious benefits:
 It compresses your content: Because this content isn’t decompressed until it

reaches the client, it reduces the time required to download your application.
This is particularly important if your application contains large static
resources , like images or blocks of text.

 It simplifies deployment: When you’re ready to take your Silverlight
application live, you simply need to copy the XAP file to the web server,
along with TestPage.html or a similar HTML file that includes a Silverlight
content region. You don’t need to worry about keeping track of the
assemblies and resources.

Thanks to the XAP model, there’s not much to think about when deploying
a simple Silverlight application. Hosting a Silverlight application simply

38 Silverlight 2 Visual Essentials

involves making the appropriate XAP file available, so the clients can
download it through the browser and run it on their local machines.
However, there’s one potential stumbling block. When hosting a Silverlight
application, your web server must be configured to allow requests for the
XAP file type. This file type is included by default in IIS 7, provided
you’re using Windows Server 2008 or Windows Vista with Service Pack 1.
If you have Windows Vista without Service Pack 1, you have an earlier
version of IIS, or you have another type of web server, you’ll need to add a
file type that maps the .xap extension to the MIME type application/x-
silverlight-app. For IIS instructions, see
http://learn.iis.net/page.aspx/262/silverlight.

Tip In some situations, you may want to optimize startup times by
splitting your Silverlight application into pieces that can be downloaded
separately.

The HTML Entry Page
The last ingredient in the deployment picture is the HTML entry page. This
page is the entry point into your Silverlight content—in other words, the
page the user requests in the web browser. Visual Studio names this file
TestPage.html (in a Silverlight-only solution), although you’ll probably
want to rename it to something more appropriate.
The HTML entry page doesn’t actually contain Silverlight markup or code.
Instead, it simply sets up the content region for the Silverlight plug-in,
using a small amount of JavaScript. (For this reason, browsers that have
JavaScript disabled won’t be able to see Silverlight content.) Here’s a
slightly shortened version of the HTML entry page that preserves the key
details:

http://learn.iis.net/page.aspx/262/silverlight
http://learn.iis.net/page.aspx/262/silverlight

 Silverlight 2 Visual Essentials 39

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Silverlight Project Test Page</title>

 <style type="text/css">
 ...
 </style>

 <script type="text/javascript">
 ...
 </script>
</head>

<body>
 <!-- Runtime errors from Silverlight will be displayed here. -->
 <div id='errorLocation' style="font-size: small;color: Gray;"></div>

 <!-- Silverlight content will be displayed here. -->
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="source" value="SilverlightApplication1.xap"/>
 <param name="onerror" value="onSilverlightError" />
 <param name="background" value="white" />

 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"
 alt="Get Microsoft Silverlight" style="border-style: none"/>

 </object>
 <iframe style='visibility:hidden;height:0;width:0;border:0px'></iframe>
 </div>
</body>
</html>

The key details in this markup are the two highlighted <div> elements. Both
of these <div> elements are placeholders that are initially left empty. The
first <div> element is reserved for error messages. If the Silverlight plug-in
is launched but the Silverlight assembly fails to load successfully, an error
message will be shown here, thanks to this JavaScript code, which is
featured earlier in the page:

http://www.w3.org/1999/xhtml
http://go.microsoft.com/fwlink/?LinkID=108182
http://go.microsoft.com/fwlink/?LinkId=108181

40 Silverlight 2 Visual Essentials

<script type="text/javascript">
 function onSilverlightError(sender, args) {
 if (args.errorType == "InitializeError") {
 var errorDiv = document.getElementById("errorLocation");
 if (errorDiv != null)
 errorDiv.innerHTML = args.errorType + "- " + args.errorMessage;
 }
 }
</script>

Tip The error display is a debugging convenience. When you’re
ready to deploy the application, you should remove the <div> element so
sensitive information won’t be shown to the user (who isn’t in a position to
correct the problem anyway).

This second <div> element is more interesting. It represents the Silverlight
content region. It contains an <object> element that loads the Silverlight
plug-in and an <iframe> element that’s used to display it in certain
browsers. The <object> element includes four key attributes: data (which
indentifies it as a Silverlight content region), type (which indicates the
required Silverlight version), and height and width (which determine the
dimensions of the Silverlight content region).
<object data="data:application/x-silverlight,"
 type="application/x-silverlight-2" width="100%" height="100%">
 ...
</object>

Sizing the Silverlight Content Region

By default, the Silverlight content region is given a width and height of
100%, so the Silverlight content can consume all the available space in the
browser window. You can constrain the size of the Silverlight content
region by hard-coding pixel sizes for the height and width attributes (which
is limiting and usually avoided). Or, you can place the <div> element that
holds the Silverlight content region in a more restrictive place on the

 Silverlight 2 Visual Essentials 41

page—for example, in a cell in a table, in another fixed-sized element, or
between other <div> elements in a multicolumn layout.
Even though the default entry page allows Silverlight content to take as
much size as it wants, your XAML pages may include hard-coded
dimensions. By default, Visual Studio gives every new page a width of 400
pixels and a height of 300 pixels, and the example you saw earlier in this
chapter limited the page to 400×100 pixels. If the browser window is larger
than the hard-coded page size, the extra space won’t be used. If the browser
window is smaller than the hard-coded page size, part of the page may fall
outside the visible area of the window.
Hard-coded sizes make sense when you have a graphically rich layout with
absolute positioning and little flexibility. If you don’t, you might prefer to
remove the Width and Height attributes from the <UserControl> start tag.
That way, the page will be sized to match the browser window, and your
Silverlight content will fit itself into the currently available space.
To get a better understanding of the actual dimensions of the Silverlight
content region, you can add a border around it by adding a simple style rule
to the <div>, like this:
<div id="silverlightControlHost" style="border: 1px red solid">

Configuring the Silverlight Content Region

The <object> element contains a series of <param> elements that specify
additional options to the Silverlight plug-in. Here are the options in the
standard entry page that Visual Studio generates:
<param name="source" value="SilverlightApplication1.xap"/>
<param name="onerror" value="onSilverlightError" />
<param name="background" value="white" />

Table 1-1 lists all the parameters that you can use.

42 Silverlight 2 Visual Essentials

Table 1-1. Parameters for the Silverlight Plug-In

NAME VALUE

source

A URI that points to the XAP file
for your Silverlight application.
This parameter is required.

background

The color that’s used to paint the
background of the Silverlight
content region, behind any
content that you display (but in
front of any HTML content that
occupies the same space). If you
set the Background property of a
page, it’s painted over this
background.

enableHtmlAccess

A Boolean that specifies whether
the Silverlight plug-in has access
to the HTML object model. Use
true if you want to be able to
interact with the HTML elements
on the entry page through your
Silverlight code

initParams

A string that you can use to pass
custom initialization information.
This technique is useful if you
plan to use the same Silverlight
application in different ways on
different pages.

 Silverlight 2 Visual Essentials 43

NAME VALUE

maxFramerate

The desired frame rate for
animations. Higher frame rates
result in smoother animations,
but the system load and
processing power of the current
computer may mean that a high
frame rate can’t be honored. The
value is 60 (for 60 frames per
second). Animation is discussed
briefly in Chapter 8.

splashScreenSource
The location of a XAML splash
screen to show while the XAP file
is downloading.

windowless

A Boolean that specifies whether
the plug-in renders in windowed
mode (the default) or windowless
mode. If you set this to true, the
HTML content underneath your
Silverlight content region can
show through. This is ideal if
you’re planning to create a
shaped Silverlight control that
integrates with HTML content.

onSourceDownloadProgressChanged

A JavaScript event handler that’s
triggered when a piece of the
XAP file has been downloaded.
You can use this event handler to
build a startup progress bar.

44 Silverlight 2 Visual Essentials

Table 1-1. continued

NAME VALUE

onSourceDownloadComplete
A JavaScript event handler that’s
triggered when the entire XAP file
has been downloaded.

onLoad

A JavaScript event handler that’s
triggered when the markup in the
XAP file has been processed and
your startup page has been
loaded.

onResize

A JavaScript event handler that’s
triggered when the size of
Silverlight content region has
changed.

onError

A JavaScript event handler that’s
triggered when an unhandled
error occurs in the Silverlight
plug-in or in your code.

Note By convention, all of these parameter names should be written
completely in lowercase (for example, splashscreensource rather than
splashScreenSource). However, they’re shown with mixed case here for
better readability.

Displaying Alternative Content

The <div> element also has some HTML markup that will be shown if the
<object> tag isn’t understood or the plug-in isn’t available. In the standard
entry page, this markup consists of a “Get Silverlight” picture, which is

 Silverlight 2 Visual Essentials 45

wrapped in a hyperlink that, when clicked, takes the user to the Silverlight
download page.

 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"
 alt="Get Microsoft Silverlight" style="border-style: none"/>

CHANGING THE TEST PAGE
If you’re creating a combined Silverlight and ASP.NET solution, the
test page is generated when the project is first created. As a result,
it’s easy to change it. However, if you’re using a Silverlight-only
project, you need to go to a bit more work. That’s because the test
page is generated each time you run the project, and so any changes
you make to it will be discarded.

The easiest solution is to create a new test page for your project.
Here’s how:

1. Run your project at least once to create the test page.

2. Click the Show All Files icon at the top of Solution Explorer.

3. Expand the ClientBin folder in Solution Explorer.

4. Find the TestPage.html file, right click it, and choose Copy. Then
right-click the ClientBin folder and choose Paste. This duplicate will
be your custom test page. Right-click the new file and choose
Rename to give it a better name.

5. To make the custom test page a part of your project, right-click it
and choose Include in Project.

6. To tell Visual Studio to navigate to your test page when you run
the project, right-click your test page and choose Set As Start Page.

http://go.microsoft.com/fwlink/?LinkID=108182
http://go.microsoft.com/fwlink/?LinkId=108181

46 Silverlight 2 Visual Essentials

The Application Manifest
As you’ve seen, the Silverlight execution model is quite straightforward.
First, the client requests the HTML entry page (such as TestPage.html). At
this point, the browser downloads the HTML file and processes its markup.
When it reaches the <object> element, it loads the Silverlight plug-in and
creates the Silverlight content region. After this step, the client-side plug-in
takes over. First, it downloads the linked XAP file (which is identified by
the source parameter inside the <object> element). Then, it looks at the
AppManifest.xaml file to decide what to do next.
Here’s the content of the AppManifest.xaml for a newly generated Visual
Studio project, which also matches the AppManifest.xaml in the simple
example you saw earlier in this chapter:
<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 EntryPointAssembly="SilverlightApplication1"
 EntryPointType="SilverlightApplication1.App"
 RuntimeVersion="2.0.30226.2">
 <Deployment.Parts>
 <AssemblyPart x:Name="SilverlightApplication1"
 Source="SilverlightApplication1.dll" />
 <AssemblyPart x:Name="System.Windows.Controls"
 Source="System.Windows.Controls.dll" />
 <AssemblyPart x:Name="System.Windows.Controls.Extended"
 Source="System.Windows.Controls.Extended.dll" />
 </Deployment.Parts>
</Deployment>

The EntryPointAssembly and EntryPointType attributes are the key details
that determine what code the Silverlight plug-in will execute next.
EntryPointAssembly indicates the name of the DLL that has your compiled
Silverlight code (without the .dll extension). EntryPointType indicates the
name of the application class in that assembly. When the Silverlight plug-in
sees the AppManifest.xaml shown here, it loads the
SilverlightApplication1.dll assembly, and then creates the App object

http://schemas.microsoft.com/client/2007/deployment
http://schemas.microsoft.com/winfx/2006/xaml

 Silverlight 2 Visual Essentials 47

inside. The App object triggers a Startup event, which runs this code,
creating the first page:
private void Application_Startup(object sender, StartupEventArgs e)
{
 // Load the main control.
 this.RootVisual = new Page();
}

If you’ve added a different user control to your application, and you want
to show it as the first page, simply edit the App.xaml.cs file, and replace the
Page class with the name of your custom class:
this.RootVisual = new CustomPage();

SILVERLIGHT DECOMPILATION
Now that you understand the infrastructure that underpins a
Silverlight 2.0 project, it’s easy to see how you can decompile any
existing application to learn more about how it works. Here’s how:

1. Surf to the entry page.

2. View the source for the web page, and look for the <param>
element that points to the XAP file.

3. Type a request for the XAP file into your browser’s address bar.
(Keep the same domain, but replace the page name with the partial
path that points to the XAP file.)

4. Choose Save As to save the XAP file locally.

5. Rename the XAP file to add the .zip extension. Then, open it and
extract the project assembly. This assembly is essentially the same
as the assemblies you build for ordinary .NET applications. Like
ordinary .NET assemblies, it contains Intermediate Language (IL)
code.

48 Silverlight 2 Visual Essentials

6. Open the project assembly in a tool like Reflector
(http://www.aisto.com/roeder/dotnet) to view the IL and embedded
resources. Using the right plug-in, you can even decompile the IL to
C# syntax.

Of course, many Silverlight developers don’t condone this sort of
behavior (much as many .NET developers don’t encourage end users
to decompile their rich client applications). However, it’s an
unavoidable side effect of the Silverlight compilation model.

Because IL code can be easily decompiled or reverse engineered, it’s
not an appropriate place to store secrets (like encryption keys,
proprietary algorithms, and so on). If you need to perform a task that
uses sensitive code, consider calling a web service from your
Silverlight application. If you just want to prevent other hotshots
from reading your code and copying your style, you may be
interested in raising the bar with an obfuscation tool that uses a
number of tricks to scramble the structure and names in your
compiled code without changing its behavior. Visual Studio ships with
a scaled-down obfuscation tool named Dotfuscator, and many more
are available commercially.

The Last Word
In this chapter, you took your first look at the Silverlight application model.
You saw how to create a Silverlight project in Visual Studio, add a simple
event handler, and test it. You also peered behind the scenes to explore
how a Silverlight application is compiled and deployed.
In the following chapters, you’ll learn much more about the full capabilities
of the Silverlight platform. Sometimes, you might need to remind yourself
that you’re coding inside a lightweight browser-hosted framework, because
much of Silverlight coding feels like the full .NET platform, despite the
fact that it’s built on only a few megabytes of compressed code. Out of all
of Silverlight’s many features, its ability to pack a miniature modern
programming framework into a slim 4MB download is surely its most
impressive.

http://www.aisto.com/roeder/dotnet

 Silverlight 2 Visual Essentials 49

Chapter 2: Layout
Half the battle in user interface design is organizing the content in a way
that’s attractive, practical, and flexible. In a browser-hosted application,
this is a particularly tricky task, because your application may be used on a
wide range of different computers and devices (all with different display
hardware), and you have no control over the size of the browser window in
which your Silverlight content is placed.
Fortunately, Silverlight inherits the most important part of WPF’s
extremely flexible layout model. Using the layout model, you organize
your content in a set of different layout containers. Each container has its
own layout logic—one stacks elements, another arranges them in a grid of
invisible cells, and another uses a hard-coded coordinate system. If you’re
ambitious, you can even create your own containers with custom layout
logic.

The Layout Containers
A Silverlight window can hold only a single element. To fit in more than
one element and create a more practical user interface, you need to place a
container in your page and then add other elements to that container. Your
layout is determined by the container that you use.
All the Silverlight layout containers are panels that derive from the abstract
System.Windows.Controls.Panel class (see Figure 2-1).

50 Silverlight 2 Visual Essentials

Figure 2-1. The hierarchy of the Panel class

The Panel class adds two public properties: Background and Children.
Background is the brush that’s used to paint the panel background. (You’ll
learn more about brushes in Chapter 7.) Children is the collection of items
that’s stored in the panel. This is the first level of elements—in other
words, these elements may themselves contain more elements.

Note The Panel class also has a bit of internal plumbing you can use if
you want to create your own layout container. You’ll learn how it works
when you learn how to create a custom layout container later in this
chapter.

On its own, the base Panel class is nothing but a starting point for other
more specialized classes. Silverlight provides three Panel-derived classes
that you can use to arrange layout, which are listed in Table 2-1. As with
all Silverlight controls and most visual elements, these classes are found in
the System.Windows.Controls namespace.

 Silverlight 2 Visual Essentials 51

Table 2-1. Core Layout Panels

NAME DESCRIPTION

StackPanel Places elements in a horizontal or vertical stack.
This layout container is typically used for small
sections of a larger, more complex page.

Grid Arranges elements in rows and columns according
to an invisible table. This is one of the most
flexible and commonly used layout containers.

Canvas Allows elements to be positioned absolutely using
fixed coordinates. This layout container is the
simplest but least flexible.

Layout containers can be nested. A typical user interface begins with the
Grid, Silverlight’s most capable container, and contains other layout
containers that arrange smaller groups of elements, such as captioned text
boxes, items in a list, icons on a toolbar, a column of buttons, and so on.

The Panel Background
All Panel elements introduce the concept of a background by adding a
Background property. It’s natural to expect that the Background property
would use some sort of color object. However, this property actually uses
something much more versatile: a Brush object. That gives you the
flexibility to fill your background and foreground content with a solid color
(by using the SolidColorBrush) or something more exotic (for example, by
using a LinearGradientBrush or TileBrush). In this section, you’ll consider
only the simple solid-color fills provided by the SolidColorBrush (I will
mention other options later on in the book).

Note All Brush classes are found in the System.Windows.Media
namespace.

52 Silverlight 2 Visual Essentials

For example, if you want to give your entire page a light blue background,
you could adjust the background of the root panel. Here’s the code that
does the trick:
layoutRoot.Background = new SolidColorBrush(Colors.AliceBlue);

This code creates a new SolidColorBrush using a ready-made color via a
static property of the handy Colors class. (The names are based on the color
names supported by most web browsers.) It then sets the brush as the
background brush for the button, which causes its background to be painted
a light shade of blue.
The Colors class offers handy shortcuts, but it’s not the only way to set a
color. You can also create a Color object by supplying the R, G, B values
(red, green, and blue). Each one of these values is a number from 0 to 255:
int red = 0; int green = 255; int blue = 0;
layoutRoot.Background = new SolidColorBrush(Color.FromRgb(red, green, blue));

You can also make a color partly transparent by supplying an alpha value
when calling the Color.FromArgb() method. An alpha value of 255 is
completely opaque, while 0 is completely transparent.
Often, you’ll set colors in XAML rather than in code. Here, you can use a
helpful shortcut. Rather than define a Brush object, you can supply a color
name or color value. The type converter for the Background property will
automatically create a SolidColorBrush object using the color you specify.
Here’s an example that uses a color name:
<Grid x:Name="layoutRoot" Background="Red">

It’s equivalent to this more verbose syntax:
<Grid x:Name="layoutRoot">
 <Grid.Background>
 <SolidColorBrush Color="Red" />
 </Grid.Background>
</Grid>

 Silverlight 2 Visual Essentials 53

You need to use the longer form if you want to create a different type of
brush, such as a LinearGradientBrush, and use that to paint the background.
If you want to use a color code, you need to use a slightly less convenient
syntax that puts the R, G, and B values in hexadecimal notation. You can
use one of two formats—either #rrggbb or #aarrggbb (the difference being
that the latter includes the alpha value). You need only two digits to supply
the A, R, G, and B values because they’re all in hexadecimal notation.
Here’s an example that creates the same color as in the previous code
snippets using #aarrggbb notation:
<Grid x:Name="layoutRoot" Background="#FFFF0000">

Here the alpha value is FF (255), the red value is FF (255), and the green
and blue values are 0.

Note Brushes support automatic change notification. In other words, if
you attach a brush to a control and change the brush, the control updates
itself accordingly.

The Background isn’t the only drawing detail you can set with a brush. You
can also paint foreground text color in many controls using the Foreground
property, and paint a border around some using the BorderBrush and
BorderThickness properties. BorderBrush takes a brush of your choosing, and
BorderThickness takes the width of the border in device-independent units.
You need to set both properties before you’ll see the border.
By default, the Background of a layout panel is set to a null reference, which
is equivalent to this:
<Grid x:Name="layoutRoot" Background="{x:Null}">

When your panel has a null background, any content underneath will show
through (similar to setting a fully transparent background color). However,

54 Silverlight 2 Visual Essentials

there’s an important difference—the layout container won’t be able to
receive mouse events.

Borders
The layout containers allow you to paint a background, but not a border
outline. However, there’s an element that fills in the gap—the Border.
The Border class is pure simplicity. It takes a single piece of nested content
(which is often a layout panel) and adds a background or border around it.
To master the Border, you need nothing more than the properties listed in
Table 2-2.

Table 2-2. Properties of the Border Class

NAME DESCRIPTION

Background Sets a background that appears behind all the
content in the border using a Brush object. You
can use a solid color or something more exotic.

BorderBrush and
BorderThickness

Sets the color of the border that appears at the
edge of the Border object, using a Brush object,
and sets the width of the border, respectively.
To show a border, you must set both properties.

CornerRadius Allows you to gracefully round the corners of
your border. The greater the CornerRadius, the
more dramatic the rounding effect is.

Padding Adds spacing between the border and the
content inside. (By contrast, margin adds
spacing outside the border.)

 Silverlight 2 Visual Essentials 55

Here’s a straightforward, slightly rounded border around a button in a
StackPanel:
<Border Margin="25" Padding="8" Background="LightYellow"
 BorderBrush="SteelBlue" BorderThickness="8" CornerRadius="15">
 <Button Margin="3" Content="Click Me"></Button>
</Border>

Figure 2-2 shows the result.

Figure 2-2. A basic border

Simple Layout with the StackPanel
The StackPanel is one of the simplest layout containers. It simply stacks its
children in a single row or column. These elements are arranged based on
their order.
For example, consider this page, which contains a stack with one TextBlock
and four buttons:

56 Silverlight 2 Visual Essentials

<UserControl x:Class="Layout.SimpleStack"
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <StackPanel Background="White">
 <TextBlock Text="A Button Stack"></TextBlock>
 <Button Content="Button 1"></Button>
 <Button Content="Button 2"></Button>
 <Button Content="Button 3"></Button>
 <Button Content="Button 4"></Button>
 </StackPanel>
</UserControl>

Figure 2-3 shows the result.

Figure 2-3. The StackPanel in action

http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/winfx/2006/xaml

 Silverlight 2 Visual Essentials 57

By default, a StackPanel arranges elements from top to bottom, making
each one as tall as is necessary to display its content. In this example, that
means the TextBlock and buttons are sized just large enough to comfortably
accommodate the text inside. All the elements are then stretched to the full
width of the StackPanel, which is the width of your page.
In this example, the Height and Width properties of the page are not set. As
a result, the page grows to fit the full the Silverlight content region (in this
case, the complete browser window). Most of the examples in this chapter
use this approach, because it makes it easier to experiment with the
different layout containers and see how they resize themselves to fit
different sizes.

Note Once you’ve examined all the layout containers, you’ll take a
closer look at the issue of page sizes, and you’ll learn about your different
options for dealing content that doesn’t fit. For more information, see the
section “The Page” later in this chapter.

The StackPanel can also be used to arrange elements horizontally by setting
the Orientation property:
<StackPanel Orientation="Horizontal" Background="White">

Now elements are given their minimum width (wide enough to fit their
text) and are stretched to the full height of the containing panel (see
Figure 2-4).

58 Silverlight 2 Visual Essentials

Figure 2-4. The StackPanel with horizontal orientation

Clearly, this doesn’t provide the flexibility real applications need.
Fortunately, you can fine-tune the way the StackPanel and other layout
containers work using layout properties, as described next.

Layout Properties
Although layout is determined by the container, the child elements can still
get their say. In fact, layout panels work in concert with their children by
respecting a small set of layout properties, as listed in Table 2-3.

Table 2-3. Layout Properties

NAME DESCRIPTION

HorizontalAlignment Determines how a child is positioned
inside a layout container when there’s
extra horizontal space available. You can
choose Center, Left, Right, or Stretch.

 Silverlight 2 Visual Essentials 59

NAME DESCRIPTION

VerticalAlignment Determines how a child is positioned
inside a layout container when there’s
extra vertical space available. You can
choose Center, Top, Bottom, or Stretch.

Margin Adds a bit of breathing room around an
element. The Margin property is an
instance of the
System.Windows.Thickness structure,
with separate components for the top,
bottom, left, and right edges.

MinWidth and MinHeight Set the minimum dimensions of an
element. If an element is too large for its
layout container, it will be cropped to fit.

MaxWidth and MaxHeight Set the maximum dimensions of an
element. If the container has more room
available, the element won’t be enlarged
beyond these bounds, even if the
HorizontalAlignment and
VerticalAlignment properties are set to
Stretch.

Width and Height Explicitly set the size of an element. This
setting overrides a Stretch value for the
HorizontalAlignment or
VerticalAlignment properties. However,
this size won’t be honored if it’s outside of
the bounds set by the MinWidth,
MinHeight, MaxWidth, and MaxHeight.

All of these properties are inherited from the base FrameworkElement class
and are therefore supported by all the graphical widgets you can use in a
Silverlight page.

60 Silverlight 2 Visual Essentials

Note As you learned in Chapter 2, different layout containers can
provide attached properties to their children. For example, all the children
of a Grid object gain Row and Column properties that allow them to choose
the cell where they’re placed. Attached properties allow you to set
information that’s specific to a particular layout container. However, the
layout properties in Table 2-3 are generic enough that they apply to many
layout panels. Thus, these properties are defined as part of the base
FrameworkElement class.

Alignment
To understand how these properties work, take another look at the simple
StackPanel shown in Figure 2-3. In this example—a StackPanel with
vertical orientation—the VerticalAlignment property has no effect because
each element is given as much height as it needs and no more. However,
the HorizontalAlignment is important. It determines where each element is
placed in its row.
Ordinarily, the default HorizontalAlignment is Left for a label and Stretch
for a button. That’s why every button takes the full column width.
However, you can change these details:
<StackPanel Background="White">
 <TextBlock HorizontalAlignment="Center" Text="A Button Stack"></TextBlock>
 <Button HorizontalAlignment="Left" Content="Button 1"></Button>
 <Button HorizontalAlignment="Right" Content="Button 2"></Button>
 <Button Content="Button 3"></Button>
 <Button Content="Button 4"></Button>
</StackPanel>

The first two buttons are given their minimum sizes and aligned
accordingly, while the bottom two buttons are stretched over the entire
StackPanel. If you resize the page, you’ll see that the label remains in the
middle and the first two buttons stay stuck to either side.

 Silverlight 2 Visual Essentials 61

Note The StackPanel also has its own HorizontalAlignment and
VerticalAlignment properties. By default, both of these are set to Stretch,
and so the StackPanel fills its container completely. In this example, that
means the StackPanel fills the page. If you use a different value for
VerticalAlignment, the StackPanel will be made just large enough to fit the
widest control.

Margin
There’s an obvious problem with the StackPanel example in its current
form. A well-designed page doesn’t just contain elements—it also includes
a bit of extra space in between the elements. To introduce this extra space
and make the StackPanel example less cramped, you can set control
margins.
When setting margins, you can set a single width for all sides, like this:
<Button Margin="5" Content="Button 3"></Button>

Alternatively, you can set different margins for each side of a control in the
order left, top, right, bottom:
<Button Margin="5,10,5,10" Content="Button 3"></Button>

In code, you can set margins using the Thickness structure:
cmd.Margin = new Thickness(5);

Getting the right control margins is a bit of an art because you need to
consider how the margin settings of adjacent controls influence one
another. For example, if you have two buttons stacked on top of each other,
and the topmost button has a bottom margin of 5, and the bottommost
button has a top margin of 5, you have a total of 10 pixels of space between
the two buttons.

62 Silverlight 2 Visual Essentials

Ideally, you’ll be able to keep different margin settings as consistent as
possible and avoid setting distinct values for the different margin sides. For
instance, in the StackPanel example, it makes sense to use the same margins
on the buttons and on the panel itself, as shown here:
<StackPanel Margin="3" Background="White">
 <TextBlock Margin="3" HorizontalAlignment="Center"
 Text="A Button Stack"></TextBlock>
 <Button Margin="3" HorizontalAlignment="Left" Content="Button 1"></Button>
 <Button Margin="3" HorizontalAlignment="Right" Content="Button 2"></Button>
 <Button Margin="3" Content="Button 3"></Button>
 <Button Margin="3" Content="Button 4"></Button>
</StackPanel>

This way, the total space between two buttons (the sum of the two button
margins) is the same as the total space between the button at the edge of the
page (the sum of the button margin and the StackPanel margin). Figure 2-5
shows this more respectable page, and Figure 2-6 shows how the margin
settings break down.

Figure 2-5. Adding margins between elements

 Silverlight 2 Visual Essentials 63

Figure 2-6. How margins are combined

Minimum, Maximum, and Explicit Sizes
Finally, every element includes Height and Width properties that allow you
to give it an explicit size. However, just because you can set explicit sizes
doesn’t mean you should. In most cases, it’s better to let elements grow to
fit their content. For example, a button expands as you add more text. You
can lock your elements into a range of acceptable sizes by setting a
maximum and minimum size, if necessary. If you do add size information,
you risk creating a more brittle layout that can’t adapt to changes and (at
worst) truncates content that doesn’t fit.
For example, you might decide that the buttons in your StackPanel should
stretch to fit the StackPanel but be made no larger than 200 pixels wide and

64 Silverlight 2 Visual Essentials

no smaller than 100 pixels wide. (By default, buttons start with a minimum
width of 75 pixels.) Here’s the markup you need:
<StackPanel Margin="3">
 <TextBlock Margin="3" HorizontalAlignment="Center"
 Text="A Button Stack"></TextBlock>
 <Button Margin="3" MaxWidth="200" MinWidth="100" Content="Button 1"></Button>
 <Button Margin="3" MaxWidth="200" MinWidth="100" Content="Button 2"></Button>
 <Button Margin="3" MaxWidth="200" MinWidth="100" Content="Button 3"></Button>
 <Button Margin="3" MaxWidth="200" MinWidth="100" Content="Button 4"></Button>
</StackPanel>

When the StackPanel sizes a button that doesn’t have a hard-coded size, it
considers several pieces of information:
 The minimum size: Each button will always be at least as large as the

minimum size.
 The maximum size: Each button will always be smaller than the maximum

size (unless you’ve incorrectly set the maximum size to be smaller than the
minimum size).

 The content: If the content inside the button requires a greater width, the
StackPanel will attempt to enlarge the button.

 The size of the container: If the minimum width is larger than the width of
the StackPanel, a portion of the button will be cut off. Otherwise, the button
will not be allowed to grow wider than the StackPanel, even if it can’t fit all
its text on the button surface.

 The horizontal alignment: Because the button uses a HorizontalAlignment
of Stretch (the default), the StackPanel will attempt to enlarge the button to
fill the full width of the StackPanel.

 Silverlight 2 Visual Essentials 65

The trick to understanding this process is to realize that the minimum and
maximum size set the absolute bounds. Within those bounds, the
StackPanel tries to respect the button’s desired size (to fit its content) and
its alignment settings.
Figure 2-7 sheds some light on how this works with the StackPanel. On the
top is the page at its minimum size. The buttons are 100 pixels each, and
the page cannot be resized to be narrower. If you shrink the page from this
point, the right side of each button will be clipped off. (You can deal with
this situation using scrolling, as discussed later in this chapter.)

Figure 2-7. Constrained button sizing

As you enlarge the page, the buttons grow with it until they reach their
maximum of 200 pixels. From this point on, if you make the page any
larger, the extra space is added to either side of the button (as shown on the
right).

66 Silverlight 2 Visual Essentials

Note In some situations, you might want to use code that checks how
large an element is in a page. The Height and Width properties are no help
because they indicate your desired size settings, which might not
correspond to the actual rendered size. In an ideal scenario, you’ll let your
elements size to fit their content, and the Height and Width properties won’t
be set at all. However, you can find out the actual size used to render an
element by reading the ActualHeight and ActualWidth properties. But
remember, these values may change when the page is resized or the
content inside it changes.

The Grid
The Grid is the most powerful layout container in Silverlight. In fact, the
Grid is so useful that when you add a new XAML document for a page in
Visual Studio, it automatically adds the Grid tags as the first-level
container, nested inside the root UserControl element.
The Grid separates elements into an invisible grid of rows and columns.
Although more than one element can be placed in a single cell (in which
case they overlap), it generally makes sense to place just a single element
per cell. Of course, that element may itself be another layout container that
organizes its own group of contained controls.

Tip Although the Grid is designed to be invisible, you can set the
Grid.ShowGridLines property to true to take a closer look. This feature isn’t
really intended for prettying up a page. Instead, it’s a debugging
convenience that’s designed to help you understand how the Grid has
subdivided itself into smaller regions. This feature is important because you
have the ability to control exactly how the Grid chooses column widths and
row heights.

 Silverlight 2 Visual Essentials 67

Creating a Grid-based layout is a two-step process. First, you choose the
number of columns and rows that you want. Next, you assign the
appropriate row and column to each contained element, thereby placing it
in just the right spot.
You create grids and rows by filling the Grid.ColumnDefinitions and
Grid.RowDefinitions collections with objects. For example, if you decide
you need two rows and three columns, you’d add the following tags:
<Grid ShowGridLines="True" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 ...
</Grid>

As this example shows, it’s not necessary to supply any information in a
RowDefinition or ColumnDefinition element. If you leave these elements
empty (as shown here), the Grid will share the space evenly between all
rows and columns. In this example, each cell will be exactly the same size,
depending on the size of the containing page.
To place individual elements into a cell, you use the attached Row and
Column properties. Both these properties take 0-based index numbers. For
example, here’s how you could create a partially filled grid of buttons:
<Grid ShowGridLines="True" Background="White">
 ...

 <Button Grid.Row="0" Grid.Column="0" Content="Top Left"></Button>
 <Button Grid.Row="0" Grid.Column="1" Content="Middle Left"></Button>
 <Button Grid.Row="1" Grid.Column="2" Content="Bottom Right"></Button>

68 Silverlight 2 Visual Essentials

 <Button Grid.Row="1" Grid.Column="1" Content="Bottom Middle"></Button>
</Grid>

Each element must be placed into its cell explicitly. This allows you to
place more than one element into a cell (which rarely makes sense) or leave
certain cells blank (which is often useful). It also means you can declare
your elements out of order, as with the final two buttons in this example.
However, it makes for clearer markup if you define your controls row by
row, and from right to left in each row.
There is one exception. If you don’t specify the Grid.Row property, the Grid
assumes that it’s 0. The same behavior applies to the Grid.Column property.
Thus, you leave both attributes off of an element to place it in the first cell
of the Grid.
Figure 2-8 shows how this simple grid appears at two different sizes.
Notice that the ShowGridLines property is set to true so that you can see the
separation between each column and row.

 Silverlight 2 Visual Essentials 69

Figure 2-8. A simple grid

70 Silverlight 2 Visual Essentials

As you would expect, the Grid honors the basic set of layout properties
listed earlier in Table 2-3. That means you can add margins around the
content in a cell, you can change the sizing mode so an element doesn’t
grow to fill the entire cell, and you can align an item along one of the edges
of a cell. If you force an element to have a size that’s larger than the cell
can accommodate, part of the content will be chopped off.

Fine-Tuning Rows and Columns
As you’ve seen, the Grid gives you the ability to create a proportionately
sized collection of rows and columns, which is often quite useful.
However, to unlock the full potential of the Grid, you can change the way
each row and column is sized.
The Grid supports three sizing strategies:
 Absolute sizes: You choose the exact size using pixels. This is the least

useful strategy because it’s not flexible enough to deal with changing content
size, changing container size, or localization.

 Automatic sizes: Each row or column is given exactly the amount of space it
needs, and no more. This is one of the most useful sizing modes.

 Proportional sizes: Space is divided between a group of rows or columns.
This is the standard setting for all rows and columns. For example, in Figure
2-8, you can see that all cells increase in size proportionately as the Grid
expands.

For maximum flexibility, you can mix and match these different sizing
modes. For example, it’s often useful to create several automatically sized
rows and then let one or two remaining rows get the leftover space through
proportional sizing.
You set the sizing mode using the Width property of the ColumnDefinition
object or the Height property of the RowDefinition object to a number. For
example, here’s how you set an absolute width of 100 pixels:
<ColumnDefinition Width="100"></ColumnDefinition>

 Silverlight 2 Visual Essentials 71

To use automatic sizing, you use a value of Auto:
<ColumnDefinition Width="Auto"></ColumnDefinition>

Finally, to use proportional sizing, you use an asterisk (*):
<ColumnDefinition Width="*"></ColumnDefinition>

This syntax stems from the world of the Web, where it’s used with HTML
frames pages. If you use a mix of proportional sizing and other sizing
modes, the proportionally sized rows or columns get whatever space is left
over.
If you want to divide the remaining space unequally, you can assign a
weight, which you must place before the asterisk. For example, if you have
two proportionately sized rows and you want the first to be half as high as
the second, you could share the remaining space like this:
<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="2*"></RowDefinition>

This tells the Grid that the height of the second row should be twice the
height of the first row. You can use whatever numbers you like to portion
out the extra space.

Note It’s easy to interact with ColumnDefinition and RowDefinition
objects programmatically. You simply need to know that the Width and
Height properties are GridLength objects. To create a GridLength that
represents a specific size, just pass the appropriate value to the GridLength
constructor. To create a GridLength that represents a proportional (*) size,
pass the number to the GridLength constructor, and pass GridUnitType.Star
as the second constructor argument. To indicate automatic sizing, use the
static property GridLength.Auto.

72 Silverlight 2 Visual Essentials

Nesting Layout Containers
The Grid is impressive on its own, but most realistic user interfaces
combine several layout containers. They may use an arrangement with
more than one Grid or mix the Grid with other layout containers like the
StackPanel.
The following markup presents a simple example of this principle. It
creates a basic dialog box with OK and Cancel buttons in the bottom right-
hand corner, and a large content region that’s sized to fit its content (the
text in a TextBlock). The entire package is centered in the middle of the
page by setting the alignment properties on the Grid.
<Grid ShowGridLines="True" Background="SteelBlue"
 HorizontalAlignment="Center" VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>

 <TextBlock Margin="10" Grid.Row="0" Foreground="White"
 Text="This is simply a test of nested containers."></TextBlock>
 <StackPanel Grid.Row="1" HorizontalAlignment="Right" Orientation="Horizontal">
 <Button Margin="10,10,2,10" Padding="3" Content="OK"></Button>
 <Button Margin="2,10,10,10" Padding="3" Content="Cancel"></Button>
 </StackPanel>
</Grid>

You’ll notice that this Grid doesn’t declare any columns. This is a shortcut
you can take if your grid uses just one column and that column is
proportionately sized (so it fills the entire width of the Grid). Figure 2-9
shows the rather pedestrian dialog box this markup creates.

 Silverlight 2 Visual Essentials 73

Figure 2-9. A basic dialog box

At first glance, nesting layout containers seems like a fair bit more work
than placing controls in precise positions using coordinates. And in many
cases, it is. However, the longer setup time is compensated by the ease with
which you can change the user interface in the future. For example, if you
decide you want the OK and Cancel buttons to be centered at the bottom of
the page, you simply need to change the alignment of the StackPanel that
contains them:
<StackPanel Grid.Row="1" HorizontalAlignment="Center" ... >

74 Silverlight 2 Visual Essentials

Similarly, if you need to change the amount of content in the first row, the
entire Grid will be enlarged to fit, and the buttons will move obligingly out
of the way. And if you add a dash of styles to this page you can improve it
even further and remove other extraneous details (such as the margin
settings) to create cleaner and more compact markup.

Tip If you have a densely nested tree of elements, it’s easy to lose
sight of the overall structure. Visual Studio provides a handy feature that
shows you a tree representation of your elements and allows you to click
your way down to the element you want to look at (or modify). This feature
is the Document Outline window, and you can show it by choosing View
Other Windows Document Outline from the menu.

Spanning Rows and Columns
You’ve already seen how you place elements in cells using the Row and
Column attached properties. You can also use two more attached properties
to make an element stretch over several cells: RowSpan and ColumnSpan.
These properties take the number of rows or columns that the element
should occupy.
Row and column spanning can achieve some interesting effects and is
particularly handy when you need to fit elements in a tabular structure
that’s broken up by dividers or longer sections of content.

Using the GridSplitter
Every Windows user has seen splitter bars—draggable dividers that
separate one section of a window from another. For example, when you use
Windows Explorer, you’re presented with a list of folders (on the left) and
a list of files (on the right). You can drag the splitter bar in between to
determine what proportion of the window is given to each pane.

 Silverlight 2 Visual Essentials 75

Note In Silverlight, you can create a similar design and give the user
the ability to resize rows or columns by adding a splitter bar to a Grid.

A Grid usually contains no more than a single GridSplitter. However, you
can nest one Grid inside another, and if you do, each Grid may have its own
GridSplitter. This allows you to create a page that’s split into two regions
(for example, a left and right pane), and you can then further subdivide one
of these regions (say, the pane on the right) into more sections (such as a
resizable top and bottom portion).

Coordinate-Based Layout with the Canvas
The only layout container you haven’t considered yet is the Canvas. It
allows you to place elements using exact coordinates, which is a poor
choice for designing rich data-driven forms and standard dialog boxes, but
a valuable tool if you need to build something a little different (such as a
drawing surface for a diagramming tool). The Canvas is also the most
lightweight of the layout containers. That’s because it doesn’t include any
complex layout logic to negotiate the sizing preferences of its children.
Instead, it simply lays them all out at the position they specify, with the
exact size they want.
To position an element on the Canvas, you set the attached Canvas.Left and
Canvas.Top properties. Canvas.Left sets the number of pixels between the
left edge of your element and the left edge of the Canvas. Canvas.Top sets the
number of pixels between the top of your element and the top of the Canvas.
Optionally, you can size your element explicitly using its Width and Height
properties. This is more common when using the Canvas than it is in other
panels because the Canvas has no layout logic of its own. (And often, you’ll
use the Canvas when you need precise control over how a combination of
elements is arranged.) If you don’t set the Width and Height properties, your
element will get its desired size—in other words, it will grow just large

76 Silverlight 2 Visual Essentials

enough to fit its content. If you change the size of the Canvas, it has no
effect on the Controls inside.
Here’s a simple Canvas that includes four buttons:
<Canvas Background="White">
 <Button Canvas.Left="10" Canvas.Top="10" Content="(10,10)"></Button>
 <Button Canvas.Left="120" Canvas.Top="30" Content="(120,30)"></Button>
 <Button Canvas.Left="60" Canvas.Top="80" Width="50" Height="50"
 Content="(60,80)"></Button>
 <Button Canvas.Left="70" Canvas.Top="120" Width="100" Height="50"
 Content="(70,120)"></Button>
</Canvas>

Figure 2-10 shows the result.

Figure 2-10. Explicitly positioned buttons in a Canvas

 Silverlight 2 Visual Essentials 77

Like any other layout container, the Canvas can be nested inside a user
interface. That means you can use the Canvas to draw some detailed content
in a portion of your page, while using more standard Silverlight panels for
the rest of your elements.
If you have more than one overlapping element, you can set the attached
Canvas.ZIndex property to control how they are layered.
The ZIndex property is particularly useful if you need to change the position
of an element programmatically. Just call Canvas.SetZIndex() and pass in
the element you want to modify and the new ZIndex you want to apply.
Unfortunately, there is no BringToFront() or SendToBack() method—it’s up
to you to keep track of the highest and lowest ZIndex values if you want to
implement this behavior.

CHOOSING THE RIGHT LAYOUT CONTAINER
As a general rule of thumb, the Grid and StackPanel are best when
dealing with business-style applications (for example, when
displaying data entry forms or documents). They deal well with
changing window sizes and dynamic content (for example, blocks of
text that can grow or shrink depending on the information at hand).
They also make it easier to modify, localize, and reskin the
application, because adjacent elements will bump each other out of
the way as they change size. The Grid and StackPanel are also
closest to the way ordinary HTML pages work.

The Canvas is dramatically different. Because all of its children are
arranged using fixed coordinates, you need to go to more work to
position them (and even more work if you want to tweak the layout
later on in response to new elements or new formatting). However,
the Canvas makes sense in certain types of graphically rich
applications, such as games. In these applications, you need fine-
grained control, text and graphics often overlap, and you often
change coordinates programmatically. Here, the emphasis isn’t on
flexibility, but on achieving a specific visual appearance, and the
Canvas makes more sense.

78 Silverlight 2 Visual Essentials

And if none of the layout containers gives you the layout you really
want, there’s still another option—you can build your own. The
developers of Silverlight have intentionally limited the available
containers to include just the three most useful, which keeps the
Silverlight framework (and its download size) small. However, there’s
no reason you can’t re-create some of the more specialized layout
containers that exist in the WPF world.

The Page
As you’ve already seen, the top-level container for each Silverlight page is
a custom class that derives from UserControl. The UserControl class adds a
single property, named Content, to Silverlight’s basic element
infrastructure. The Content property accepts a single element, which
becomes the content of that user control.
User controls don’t include any special functionality—they’re simply a
convenient way to group together a block of related elements. However,
the way you size your user control can affect the appearance of your entire
user interface, so it’s worth taking a closer look.
You’ve already seen how you can use different layout containers and a
variety of layout properties to control whether your elements size to fit
their content, the available space, or hard-coded dimensions. Many of the
same options are available when you’re sizing a page. Your options include
the following:
 Fixed size: Set the Width and Height properties of the user control to give

your page an exact size. If you have controls inside the page that exceed these
dimensions, they will be truncated. When using a fixed-size window, it’s
common to change the HorizontalAlignment and VerticalAlignment
properties of the user control to Center, so it floats in the center of the
browser window rather than being locked into the top-left corner.

 Browser size: Remove the Width and Height properties to let your page take
the full space allocated to it in the Silverlight content region. By default,

 Silverlight 2 Visual Essentials 79

Visual Studio creates an entry page that sizes the Silverlight content region to
take 100% of the browser window. If you use this approach, it’s still possible
to create elements that stretch off the bounds of the display region, but the
user can now observe the problem and resize the browser window to see the
missing content. If you want to preserve some blank space between your page
and the browser window when using this approach, you can set the user
control’s Margin property.

 Constrained size: Remove the Width and Height properties but use the
MaxWidth, MaxHeight, MinWidth, and MinHeight properties instead. Now the
user control will resize itself to fit the browser windows within a sensible
range, and it will stop resizing when the window reaches very large or very
small dimensions, ensuring it’s never scrambled beyond recognition.

 Unlimited size: In some cases it makes sense to let your Silverlight content
region take more than the full browser window. In this situation, the browser
will add scrollbars, much as it does with a long HTML page. To get this
effect, you need to remove the Width and Height properties and edit the entry
page (TestPage.html). In the entry page, remove the width="100%" and
height="100%" attributes in the <object> element. This way, the Silverlight
content region will be allowed to grow to fit the size of your user control.

All of these approaches are reasonable choices. It simply depends on the
type of user interface that you’re building. When you use a non-fixed-size
page, your application can take advantage of the extra space in the browser
window by reflowing its layout to fit. The disadvantage is that extremely
large or small windows may make your content more difficult to read or
use. You can design for these issues, but it takes more work. On the other
hand, the disadvantage of hard-coded sizes is that your application will be
forever locked in a specific window size no matter what the browser
window looks like. This can lead to oceans of empty space (if you’ve hard-
coded a size that’s smaller than the browser window) or make the
application unusable (if you’ve hard-coded a size that’s bigger than the
browser window).

80 Silverlight 2 Visual Essentials

As a general rule of thumb, resizable pages are more flexible and preferred
where possible. They’re usually the best choice for business applications
and applications with a more traditional user interface that isn’t too heavy
on the graphics. On the other hand, graphically rich applications and games
often need more precise control over what’s taking place in the page, and
are more likely to use fixed page sizes.

Tip If you’re testing out different approaches, it helps to make the
bounds of the page more obvious. One easy way to do so is to apply a
nonwhite background to the top-level content element (for example, setting
the Background property of a Grid to Yellow). You can’t set the Background
property on the user control itself, because the UserControl class doesn’t
provide it. Another option is to use a Border element as your top-level
element, which allows you to outline the page region.

There are also a few more specialized sizing options: scrollable interfaces,
scalable interfaces, and full-screen interfaces.

Scrolling
None of the containers you’ve seen have provided support for scrolling,
which is a key feature for fitting large amounts of content in a limited
amount of space. In Silverlight, scrolling support is easy to get, but it
requires another ingredient: the ScrollViewer content control.
In order to get scrolling support, you need to wrap the content you want to
scroll inside a ScrollViewer. Although the ScrollViewer can hold anything,
you’ll typically use it to wrap a layout container.

 Silverlight 2 Visual Essentials 81

Scaling
Earlier in this chapter, you saw how the Grid can use proportional sizing to
make sure your elements take all the available space. Thus, the Grid is a
great tool for building resizable interfaces that grow and shrink to fit the
browser window.
Although this resizing behavior is usually what you want, it isn’t always
suitable. Changing the dimensions of controls changes the amount of
content they can accommodate and can have subtle layout-shifting effects.
In graphically rich applications, you might need more precise control to
keep your elements perfectly aligned. However, that doesn’t mean you
need to use fixed-size pages. Instead, you can use another trick, called
scaling.
Essentially, scaling resizes the entire visual appearance of the control, not
just its outside bounds. No matter what the scale, a control can hold the
same content—it just looks different. Conceptually, it’s like changing the
zoom level.

Full Screen
Silverlight applications also have the capability to enter a full-screen mode,
which allows them to break out of the browser window altogether. In full-
screen mode, the Silverlight plug-in fills the whole display area, and is
shown on top of all other applications, including the browser.
Full-screen mode has some serious limitations:
 You can only switch into full-screen mode when responding to a user

input event: In other words, you can switch into full-screen mode when the
user clicks a button or hits a key. However, you can’t switch into full-screen
mode as soon as your application loads up. (If you attempt to do so, you’re
code will simply be ignored.) This limitation is designed to prevent a
Silverlight application from fooling a user into thinking it’s actually another
local application or a system window.

82 Silverlight 2 Visual Essentials

 While in full-screen mode, you can’t respond to keyboard events: For
example, if you have a text box control, it’s impossible for users to type into
it. This limitation is designed to prevent users from being tricked into typing
into your application when they’re trying to access another one, but it seems
unnecessarily restrictive. It prevents you from creating many types of full-
screen games.

Note Full-screen mode was primarily designed for showing video
content in a large window.

Navigation
With the know-how you’ve picked up in this chapter, you’re ready to
create pages that use a variety of different layouts. However, there’s still
something missing—the ability to transition from one page to another.
After all, traditional rich client applications are usually built around
different windows that encapsulate distinct tasks.
The short answer is a bit disappointing. Surprisingly, Silverlight doesn’t
give you any built-in navigation capability. Although you can add multiple
user controls to your project, there’s no automated way to jump from one to
another. Silverlight does include a HyperlinkButton control, but it’s
designed to navigate between HTML pages. In other words, when a user
clicks a HyperlinkButton control, the current Silverlight application is
abandoned and the browser requests a new URL. The new page may or
may not have its own Silverlight application—but if it does, that
application needs to be downloaded to the client and will start from scratch.
The lack of navigation in Silverlight is a clear drawback. However, there
are several commonly used techniques to compensate for this limitation, as
you’ll see in the following sections.

 Silverlight 2 Visual Essentials 83

Loading Child User Controls
One approach is to create a central page that acts as the main window for
your application for its entire lifetime. However, this page can modify itself
by loading new user controls into its hierarchy of elements.
Dynamically loading a user control is easy—you simply need to create an
instance of the appropriate class and then add it to a suitable container,
such as a Border, ScrollViewer, StackPanel, or Grid.

Hiding Elements
Creating a dynamic page that adds and removes subsections is a more
commonly used approach than removing all the content of a page and
loading a different one. If you decide to create a dynamic page, it’s
important to realize that you aren’t limited to adding and removing content.
You can also temporarily hide it. The trick is to set the Visibility property,
which is defined in the base UIElement class and inherited by all elements.
panel.Visibility = Visibility.Hidden;

The Visibility property uses an enumeration that provides just two values,
Visible and Hidden. WPF included a third value, Collapsed, which is not
supported in Silverlight. Although you can set the Visibility property of
individual elements, usually you’ll show and hide entire containers (Border,
StackPanel, or Grid objects) at once.
When an element is hidden, it takes no space in the page and doesn’t
receive any input events. The rest of your interface will resize itself to fill
the available space (unless you’ve positioned your other elements with
fixed coordinates using a layout container like the Canvas).

84 Silverlight 2 Visual Essentials

Tip Many applications use panels that collapse or slide out of the
way. To create this effect, you can combine this code with a dash of
Silverlight animation. The animation will change the elements you want to
hide—for example, shrinking, compressing, or moving it.

The Last Word
In this chapter, you saw how to organize Silverlight content in an attractive
and flexible way using layout containers. You also saw how these
containers can be modified and manipulated to fit your requirements and
considered special case scenarios such as scrolling navigation and scaling.

 Silverlight 2 Visual Essentials 85

Chapter 3: Dependency Properties and
Routed Events
At this point, you’re probably itching to dive into a realistic, practical
example of Silverlight coding. But before you can get started, you need to
understand a few more fundamentals. In this chapter, you’ll get a
whirlwind tour of two key Silverlight concepts: dependency properties and
routed events.
Both of these concepts first appeared in Silverlight’s big brother
technology, WPF. They came as quite a surprise to most developers—after
all, few expected a user interface technology to retool core parts of .NET’s
object abstraction. However, WPF’s changes weren’t designed to improve
.NET but to support key WPF features. The new property model allowed
WPF elements to plug into services such as data binding, animation, and
styles. The new event model allowed WPF to adopt a layered content
model without horribly complicating the task of responding to user actions
like mouse clicks and key presses.
Silverlight borrows both concepts, albeit in a streamlined form.

Note If you’re an experienced WPF programmer, you’re probably well
versed in the intricacies of dependency properties and routed events.
However, the Silverlight implementation of dependency properties and
routed events is much simpler than that of WPF, because Silverlight is
designed to be more compact, more streamlined, and more easily ported to
different computing platforms. Dependency properties do not support the
extensive metadata that WPF uses, and routed events are able to bubble
but not tunnel—and even then, the bubbling only applies to a small set of
built-in input events.

86 Silverlight 2 Visual Essentials

Dependency Properties
Essentially, a dependency property is a property that can be set directly (for
example, by your code) or by one of Silverlight’s services (such as data
binding, styles, or animation). The key feature of this system is the way
that these different property providers are prioritized. For example, an
animation will take precedence over all other services while it’s running.
These overlapping factors make for a very flexible system. They also give
dependency properties their name—in essence, a dependency property
depends on multiple property providers, each with its own level of
precedence.
Most of the properties that are exposed by WPF elements are dependency
properties. For example, the Text property of the TextBlock, the Content
property of the Button, and the Background property of the Grid—all of
which you saw in the simple example in Chapter 1—are all dependency
properties. This hints at an important principle of Silverlight dependency
properties—they’re designed to be consumed in the same way as normal
properties. That’s because the dependency properties in the Silverlight
libraries are always wrapped by ordinary property definitions.
Although dependency features can be read and set in code like normal
properties, they’re implemented quite differently behind the scenes. The
simple reason why is performance. If the designers of Silverlight simply
added extra features on top of the .NET property system, they’d need to
create a complex, bulky layer for your code to travel through. Ordinary
properties could not support all the features of dependency properties
without this extra overhead.

Tip As a general rule, you don’t need to know that a property is a
dependency property in order to use it. However, some Silverlight features
are limited to dependency properties. Furthermore, you’ll need to know all
about dependency properties to create them in your own classes.

 Silverlight 2 Visual Essentials 87

Defining and Registering a Dependency Property
You’ll spend much more time using dependency properties than creating
them. However, there are still many reasons you’ll need to create your own
dependency properties. Obviously, they’re a key ingredient if you’re
designing a custom Silverlight element. They’re also required in some
cases if you want to add data binding, animation, or another Silverlight
feature to a portion of code that wouldn’t otherwise support it.
Creating a dependency property isn’t difficult, but the syntax takes a little
getting used to. It’s thoroughly different from creating an ordinary .NET
property.
The first step is to define an object that represents your property. This is an
instance of the DependencyProperty class (which is found in the
System.Windows namespace). The information about your property needs to
be available all the time. For that reason, your DependencyProperty object
must be defined as a static field in the associated class.
For example, consider the FrameworkElement class from which all Silverlight
elements inherit. FrameworkElement defines a Margin dependency property
that all elements share. It’s defined like this:
public class FrameworkElement: UIElement
{
 public static readonly DependencyProperty MarginProperty;

 ...
}

By convention, the field that defines a dependency property has the name
of the ordinary property, plus the word “Property” at the end. That way,
you can separate the dependency property definition from the name of the
actual property. The field is defined with the readonly keyword, which
means it can only be set in the static constructor for the FrameworkElement.

88 Silverlight 2 Visual Essentials

Note Silverlight does not support WPF’s system of property sharing—
in other words, defining a dependency property in one class and reusing it
in another. However, dependency properties follow the normal rules of
inheritance, which means that a dependency property like Margin that’s
defined in the FrameworkElement class applies to all Silverlight elements,
because all Silverlight elements derive from FrameworkElement.

Defining the DependencyProperty object is just the first step. In order for it
to become usable, you need to register your dependency property with
Silverlight. This step needs to be completed before any code uses the
property, so it must be performed in a static constructor for the associated
class.
Silverlight ensures that DependencyProperty objects can’t be instantiated
directly, because the DependencyObject class has no public constructor.
Instead, a DependencyObject instance can be created only using the static
DependencyProperty.Register() method. Silverlight also ensures that
DependencyProperty objects can’t be changed after they’re created, because
all DependencyProperty members are read-only. Instead, their values must
be supplied as arguments to the Register() method.
The following code shows an example of how a DependencyProperty must
be created. Here, the FrameworkElement class uses a static constructor to
initialize the MarginProperty:
static FrameworkElement()
{
 MarginProperty = DependencyProperty.Register("Margin",
 typeof(Thickness), typeof(FrameworkElement), null);
 ...
}

The DependencyProperty.Register() method accepts the following
arguments:

 Silverlight 2 Visual Essentials 89

 The property name (Margin in this example).
 The data type used by the property (the Thickness structure in this example).
 The type that owns this property (the FrameworkElement class in this

example).
 A callback that will be triggered when the property is changed. For example,

the TextBox reacts when the Text property is changed, and then fires the
TextChanged event to notify the application. If you don’t need to use the
property-changed callback, supply null (as in this example).

With these details in place, you’re able to register a new dependency
property so that it’s available for use.

Note The Silverlight model for dependency properties makes three
simplifications from the richer WPF model. It doesn’t use a metadata object
to indicate additional information, it doesn’t support validation
(automatically rejecting incorrect values), and it doesn’t support coercion
(automatically changing incorrect values to acceptable ones).

The Property Wrapper

The final step is to wrap your Silverlight property in a traditional .NET
property. However, whereas typical property procedures retrieve or set the
value of a private field, the property procedures for a Silverlight property
use the GetValue() and SetValue() methods that are defined in the base
DependencyObject class. Here’s an example:
public Thickness Margin
{
 get { return (Thickness)GetValue(MarginProperty); }
 set { SetValue(MarginProperty, value); }
}

90 Silverlight 2 Visual Essentials

When you create the property wrapper, you should include nothing more
than a call to SetValue() and a call to GetValue(), as in the previous
example. You should not add any extra code to validate values, raise
events, and so on. That’s because other features in Silverlight may bypass
the property wrapper and call SetValue() and GetValue() directly. (One
example is when the Silverlight parser reads your XAML markup and uses
it to initialize your user interface.)
You now have a fully functioning dependency property, which you can set
just like any other .NET property using the property wrapper:
myElement.Margin = new Thickness(5);

Dynamic Value Resolution
As you’ve already learned, dependency properties depend on multiple
different services, called property providers. To determine the current value
of a property, Silverlight has to decide which one takes precedence. This
process is called dynamic value resolution.
When evaluating a property, Silverlight follows this order of precedence:
3. Animations: If an animation is currently running, and that animation is

changing the property value, Silverlight uses the animated value.
4. Local value: If you’ve explicitly set a value in XAML or in code, Silverlight

uses the local value. Remember, you can set a value using the SetValue()
method or the property wrapper. If you set a property using a data binding or
a resource, it’s considered to be a locally set value.

5. The template parent: If an element is part of a data template or a control
template, it can inherit certain details from its parent element. If so, they
come into effect now.

6. Styles: Silverlight styles allow you to configure multiple controls with one
rule. If you’ve set a style that applies to this control, it comes into play now.

 Silverlight 2 Visual Essentials 91

Attached Properties
An attached property is a full-fledged dependency property and, like all
dependency properties, it’s managed by the Silverlight property system.
The difference is that an attached property applies to a class other than the
one where it’s defined.
The most common example of attached properties is found in layout
containers. For example, the Grid class defines the attached properties Row
and Column, which you set on the contained elements to indicate where they
should be positioned. Similarly, the Canvas defines the attached properties
Left and Top that let you place elements using absolute coordinates.
When creating an attached property, you don’t define the .NET property
wrapper. That’s because attached properties can be set on any dependency
object. For example, the Grid.Row property may be set on a Grid object (if
you have one Grid nested inside another) or on some other element. In fact,
the Grid.Row property can be set on an element even if that element isn’t in
a Grid—and even if there isn’t a single Grid object in your element tree.
Instead of using a .NET property wrapper, attached properties require a
pair of static methods that can be called to set and get the property value.
These methods use the familiar SetValue() and GetValue() methods
(inherited from the DependencyObject class). The static methods should be
named SetPropertyName() and GetPropertyName().
Here are the static methods that implement the Grid.Row attached property:
public static int GetRow(UIElement element)
{
 return (int)element.GetValue(Grid.RowProperty);
}

public static void SetRow(UIElement element, int value)
{
 element.SetValue(Grid.RowProperty, value);
}

92 Silverlight 2 Visual Essentials

And here’s an example that positions an element in the first row of a Grid
using code:
Grid.SetRow(txtElement, 0);

This sets the Grid.Row property to 0 on the txtElement object, which is a
TextBox. Because Grid.Row is an attached property, Silverlight allows you to
apply it to any other element.

Routed Events
Every .NET developer is familiar with the idea of events—messages that
are sent by an object (such as a Silverlight element) to notify your code
when something significant occurs. WPF enhanced the .NET event model
with a new concept of event routing, which allows an event to originate in
one element but be raised by another one. For example, event routing
allows a click that begins in a button to rise up to that button’s container
and then to the containing page before it’s handled by your code.
Silverlight borrows some of WPF’s routed event model, but in a
dramatically simplified form. While WPF supports several types of routed
events, Silverlight only allows one: bubbled events that rise up the
containment hierarchy from deeply nested elements to their containers.
Furthermore, Silverlight’s event bubbling is linked to a few keyboard and
mouse input events (like MouseMove and KeyDown). As you’ll see, Silverlight
doesn’t use event bubbling for higher-level control events (like Click) and
you can’t use event routing with the events in your own custom controls.

The Core Element Events
Elements inherit their basic set of events from two core classes: UIElement
and FrameworkElement.
The UIElement class defines the most important events for handling user
input and the only events that use event bubbling. Table 3-1 provides a list
of all the UIElement events.

 Silverlight 2 Visual Essentials 93

Table 3-1. The UIElement Events

EVENT BUBBLES DESCRIPTION

KeyDown Yes Occurs when a key is pressed.

KeyUp Yes Occurs when a key is released.

GotFocus Yes Occurs when the focus changes
to this element (when the user
clicks it or tabs to it). The
element that has focus is the
control that will receive keyboard
events first.

LostFocus Yes Occurs when the focus leaves
this element.

MouseLeftButtonDown Yes Occurs when the left mouse
button is pressed while the
mouse pointer is positioned over
the element. Silverlight does not
provide events for other mouse
events, like mouse wheeling
scrolling or right-button clicking.
(When the right mouse button is
clicked over the Silverlight
window, a Silverlight system
menu pops up with one option:
Silverlight Configuration.)

MouseLeftButtonUp Yes Occurs when a mouse button is
released.

94 Silverlight 2 Visual Essentials

Table 3-1. continued

EVENT BUBBLES DESCRIPTION

MouseEnter No Occurs when the mouse pointer
first moves onto an element. This
event doesn’t bubble, but if you
have several nested elements,
they’ll all fire MouseEnter events
as you move to the most deeply
nested element, passing over the
bounding line that delineates the
others.

MouseLeave No Occurs when the mouse pointer
moves off of an element.

MouseMove No Occurs when the mouse moves
while over an element. The
MouseMove event is fired
frequently—for example, if the
user slowly moves the mouse
pointer across the face of a
button, you’ll quickly receive
hundreds of MouseMove events.
For that reason, you shouldn’t
perform time-consuming tasks
when reacting to this event.

In some cases, higher-level events may effectively replace some of the
UIElement events. For example, the Button class provides a Click event
that’s triggered when the user presses and releases the mouse button, or
when the button has focus and the user hits the spacebar. Thus, when
handling button clicks, you should always respond to the Click event, not
MouseLeftButtonDown or MouseLeftButtonUp. Similarly, the TextBox provides

 Silverlight 2 Visual Essentials 95

a TextChanged event that fires when the text is changed by any mechanism
in addition to the basic KeyDown and KeyUp events.
The FrameworkElement class adds just a few more events to this model, as
detailed in Table 3-2. None of these events use event bubbling.

Table 3-2. The FrameworkElement Events

EVENT DESCRIPTION

Loaded Occurs after an element has been created,
configured, and arranged in the window for the first
time. After this point, you may want to perform
additional customization to the element in code.

SizeChanged Occurs after the size of an element changes. As you
saw in Chapter 3, you can react to this event to
implement scaling.

LayoutUpdated Occurs after the layout inside an element changes.
For example, if you create a page that uses no fixed
size (and so fits the browser window), and you resize
the browser window, the controls will be rearrange to
fit the new dimensions, and the LayoutUpdated event
will fire for your top-level layout container.

Event Bubbling
Bubbling events are events that travel up the containment hierarchy. For
example, MouseLeftButtonDown is a bubbling event. It’s raised first by the
element that is clicked. Next, it’s raised by that element’s parent, and then
by that element’s parent, and so on, until Silverlight reaches the top of the
element tree.
Bubbling events allow you to do two useful things:

96 Silverlight 2 Visual Essentials

 Centralize event handling logic: For example, you may have a layout panel
full of Image elements. When an image is clicked, you want to display some
information about it in another part of your user interface. Rather than
connect each Image element to the same event handler that does the work, you
could attach the event handler once, at the container level.

 Deal with content controls: Certain controls have the ability to hold virtually
other elements. One example is the Button class, which can hold a piece of
text or a layout panel that might contain a combination of text, shapes, and
images. In order to react to button clicks, the button needs to be able to
intercept mouse actions that happen to any of its contained elements.

Mouse Movements
Along with the obvious mouse clicking events (MouseLeftButtonDown and
MouseLeftButtonUp), Silverlight also provides mouse events that fire when
the mouse pointer is moved. These events include MouseEnter (which fires
when the mouse pointer moves over the element), MouseLeave (which fires
when the mouse pointer moves away), and MouseMove (which fires at every
point in between).
All of these events provide your code with the same information: a
MouseEventArgs object. The MouseEventArgs object includes one important
ingredient: a GetPosition() method that tells you the coordinates of the
mouse in relation to an element of your choosing. Here’s an example that
displays the position of the mouse pointer:
private void MouseMoved(object sender, MouseEventArgs e)
{
 Point pt = e.GetPosition(this);
 lblInfo.Text =
 String.Format("You are at ({0},{1}) in page coordinates",
 pt.X, pt.Y);
}

In this case, the coordinates are measured from the top-left corner of the
page area (just below the title bar of the browser).

 Silverlight 2 Visual Essentials 97

Tip In order to receive mouse events in a layout container, the
Background property must be set to a nonnull value—for example, a solid
white fill.

Capturing the Mouse
Ordinarily, every time an element receives a mouse button down event, it
will receive a corresponding mouse button up event shortly thereafter.
However, this isn’t always the case. For example, if you click an element,
hold down the mouse, and then move the mouse pointer off the element,
the element won’t receive the mouse up event.
In some situations, you may want to have a notification of mouse up
events, even if they occur after the mouse has moved off your element. To
do so, you need to capture the mouse by calling the MouseCapture() method
of the appropriate element. (MouseCapture() is defined by the base
UIElement class, so it’s supported by all Silverlight elements.) From that
point on, you’ll receive mouse down and mouse up events until you call
Mouse.Capture() again and pass in a null reference. Other elements won’t
receive mouse events while the mouse is captured. That means the user
won’t be able to click buttons elsewhere in the page, click inside text
boxes, and so on. Mouse capturing is sometimes used to implement
draggable and resizable elements.
While the mouse has been captured by an element, the user won’t be able
to interact with other elements. (For example, the user won’t be able to
click another element in your page.) However, clicking another application
or a part of the browser window outside of the Silverlight content region
will cause your application to lose its mouse capture. Mouse capturing is
generally used for short-term operations such as drag and drop.

98 Silverlight 2 Visual Essentials

Mouse Cursors
A common task in any application is to adjust the mouse cursor to show
when the application is busy or to indicate how different controls work.
You can set the mouse pointer for any element using the Cursor property,
which is inherited from the FrameworkElement class.
Every cursor is represented by a System.Windows.Input.Cursor object. The
easiest way to get a Cursor object is to use the static properties of the
Cursors class (from the System.Windows.Input namespace). They include all
the standard Windows cursors, such as the hourglass, the hand, resizing
arrows, and so on. Here’s an example that sets the hourglass for the current
page:
this.Cursor = Cursors.Wait;

Now when you move the mouse over the current page, the mouse pointer
changes to the familiar hourglass icon (in Windows XP) or the swirl (in
Windows Vista).

Note The properties of the Cursors class draw on the cursors that are
defined on the computer. If the user has customized the set of standard
cursors, the application you create will use those customized cursors.

If you set the cursor in XAML, you don’t need to use the Cursors class
directly. That’s because the type converter for the Cursor property is able to
recognize the property names and retrieve the corresponding Cursor object
from the Cursors class. That means you can write markup like this to show
the “help” cursor (a combination of an arrow and a question mark) when
the mouse is positioned over a button:
<Button Cursor="Help" Content="Help Me"></Button>

 Silverlight 2 Visual Essentials 99

It’s possible to have overlapping cursor settings. In this case, the most
specific cursor wins. For example, you could set a different cursor on a
button and on the page that contains the button. The button’s cursor will be
shown when you move the mouse over the button, and the page’s cursor
will be used for every other region in the page.

Tip Unlike WPF, Silverlight does not support custom mouse cursors.
However, you can hide the mouse cursor (set it to Cursors.None) and then
make a small image follow the mouse pointer using code like that shown in
the previous section.

Key Presses
As you saw in Table 3-1, Silverlight elements use KeyDown and KeyUp events
to notify you when a key is pressed. These events use bubbling, so they
travel up from the element that currently has focus to the containing
elements.
When you react to a key press event, you receive a KeyEventArgs object that
provides two additional pieces of information: Key and PlatformKeyCode. Key
indicates the key that was pressed is a value from the
System.Windows.Input.Key enumeration (for example, Key.S is the S key).
PlatformKeyCode is an integer value that must be interpreted based on the
hardware and operating system that’s being used on the client computer.
For example, a nonstandard key that Silverlight can’t recognize will return
a Key.Unknown value for the Key property, but will provide a PlatformKeyCode
that’s up to you to interpret. An example of a platform-specific key is
Scroll Lock on Microsoft Windows computers.

100 Silverlight 2 Visual Essentials

Note In general, it’s best to avoid any platform-specific coding. But if
you really do need to evaluate a nonstandard key, you can use the
BrowserInformation class from the System.Windows.Browser namespace to
get more information about the client computer where your application is
running.

Key Modifiers
When a key press occurs, you often need to know more than just what key
was pressed. It’s also important to find out what other keys were held down
at the same time. That means you might want to investigate the state of
other keys, particularly modifiers such as Shift and Ctrl, both of which are
supported on all platforms. Although you can handle the events for these
keys separately and keep track of them in that way, it’s much easier to use
the static Modifiers property of the Keyboard class.
To test for a Keyboard.Modifier, you use bitwise logic. For example, the
following code checks whether the Ctrl key is currently pressed.
if ((Keyboard.Modifiers & ModifierKeys.Control) == ModifierKeys.Control)
{
 message += "You are holding the Control key.";
}

Note The browser is free to intercept keystrokes. For example, in
Internet Explorer, you won’t see the KeyDown event for the Alt key, because
the browser intercepts it. The Alt key opens the Internet Explorer menu
(when used alone) or triggers a shortcut (when used with another key).

 Silverlight 2 Visual Essentials 101

Focus
In the Windows world, a user works with one control at a time. The control
that is currently receiving the user’s key presses is the control that has
focus. Sometimes this control is drawn slightly differently. For example,
the Silverlight button uses blue shading to show that it has the focus.
To move the focus from one element to another, the user can click the
mouse or use the Tab and arrow keys. In previous development
frameworks, programmers have been forced to take great care to make sure
that the Tab key moves focus in a logical manner (generally from left to
right and then down the window) and that the right control has focus when
the window first appears. In Silverlight, this extra work is seldom
necessary because Silverlight uses the hierarchical layout of your elements
to implement a tabbing sequence. Essentially, when you press the Tab key,
you’ll move to the first child in the current element or, if the current
element has no children, to the next child at the same level. For example, if
you tab through a window with two StackPanel containers, you’ll move
through all the controls in the first StackPanel and then through all the
controls in the second container.
If you want to take control of tab sequence, you can set the TabIndex
property for each control to place it in numerical order. The control with a
TabIndex of 0 gets the focus first, followed by the next highest TabIndex
value (for example, 1, then 2, then 3, and so on). If more than one element
has the same TabIndex value, Silverlight uses the automatic tab sequence,
which means it jumps to the nearest subsequent element.

Tip By default, the TabIndex property for all controls is set to 1. That
means you can designate a specific control as the starting point for a
window by setting its TabIndex to 0 but rely on automatic navigation to
guide the user through the rest of the window from that starting point,
according to the order that your elements are defined.

102 Silverlight 2 Visual Essentials

The TabIndex property is defined in the Control class, along with an
IsTabStop property. You can set IsTabStop to false to prevent a control from
being included in the tab sequence. A control that has IsTabStop set to
false can still get the focus in another way—either programmatically (when
your code calls its Focus() method) or by a mouse click.
Controls that are invisible or disabled (“grayed out”) are skipped in the tab
order and are not activated regardless of the TabIndex and IsTabStop
settings. To hide or disable a control, you set the Visibility and IsEnabled
properties, respectively.

The Last Word
In this chapter, you took a look at Silverlight dependency properties and
routed events. First, you saw how dependency properties are defined and
registered. Next, you explored event bubbling. Finally, you considered the
basic set of mouse and keyboard events that all elements provide.

Tip One of the best ways to learn more about the internals of
Silverlight is to browse the code for basic Silverlight elements, such as
Button, UIElement, and FrameworkElement. One of the best tools to perform
this browsing is Lutz Roeder’s Reflector, which is available at
http://www.aisto.com/roeder/dotnet. Using Reflector, you can see the
definitions for dependency properties and routed events, browse through
the static constructor code that initializes them, and even explore how the
properties and events are used in the class code.

http://www.aisto.com/roeder/dotnet

 Silverlight 2 Visual Essentials 103

Chapter 4: Elements
Now that you’ve learned the fundamentals of layout and mouse and
keyboard handling, you’re ready to take a closer look at the elements
Silverlight includes. In this chapter, you’ll take a quick tour of Silverlight’s
elements and explore many that you haven’t already encountered. You’ll
learn how to display wrapped, formatted text with the TextBlock. You’ll
learn about content controls, including Silverlight’s many different flavors
of button and the ToolTip control. Finally, you’ll take a quick look at
Silverlight’s list, range, and date controls.

The Silverlight Elements
You’ve already met quite a few of Silverlight’s core elements, including
the layout containers. Some of the more specialized elements, such as the
ones used for drawing 2D graphics, displaying “deep zoom” images and
video, won’t be covered in this book. But this chapter deals with all the
basics—fundamental widgets like buttons, text boxes, lists, and check
boxes—which every client developer has used in some form. Table 4-1
provides an at-a-glance look at all the elements that Silverlight includes.

Table 4-1. Silverlight Elements

CLASS DESCRIPTION

Border A rectangular or rounded border, which you
can draw around another element.

Button The familiar button, complete with a shaded
gray background, which the user clicks to
launch a task.

Calendar A one-month-at-a-time calendar view that
allows the user to select a single date.

104 Silverlight 2 Visual Essentials

Table 4-1. continued

CLASS DESCRIPTION

Canvas A layout container that allows you to lay out
elements with precise coordinates.

CheckBox A box that can be checked or unchecked, with
optional content displayed next to it.

ContentControl The base from which all content controls
(controls that can contain another element as
their content) derive.

DataGrid A multicolumn, multirow list filled with a
collection of data objects.

DatePicker A text box for date entry, with a drop-down
calendar for easy selection.

Ellipse A shape drawing element that represents an
ellipse.

Grid A layout container that places children in an
invisible grid of cells.

GridSplitter A resizing bar that allows users to change the
height or adjacent rows or width of adjacent
columns in a Grid.

HyperlinkButton A link that directs the user to another web
page.

Image An element that displays a supported image
file.

Line A shape drawing element that represents a
line.

ListBox A list of items, out of which a single one can
be selected.

 Silverlight 2 Visual Essentials 105

CLASS DESCRIPTION

MediaElement A media file, such as a video window.

MultiScaleImage An image that supports Silverlight’s deep zoom
feature and allows the user to zoom in.

RadioButton A small circle that represents one choice out of a
group of options, with optional content displayed
next to it.

Rectangle A shape-drawing element that represents a
rectangle.

RepeatButton A button that fires click events continuously
when pressed (like the buttons on either side of
a scrollbar).

ScrollBar A track with an arrow button an either side,
which allows the user to move through a large
content region that can’t be shown all at once.
Used in the ScrollViewer.

ScrollViewer A container that holds any large content and
makes it scrollable.

Slider An input control that lets the user set a numeric
value by dragging a thumb along a track.

StackPanel A layout container that stacks items from top to
bottom or left to right.

TextBlock An all-purpose text display control that includes
the ability to give different formatting to multiple
pieces of inline text.

TextBox The familiar text-entry control.

ToggleButton A button that has two states, on or off, and can
be switched from one to another by clicking (like
the check box).

106 Silverlight 2 Visual Essentials

Table 4-1. continued

CLASS DESCRIPTION

ToolTip A pop-up box that shows content when the user
moves the mouse pointer over an element.

WatermarkedTextBox A text box that adds the ability to show a prompt
when it’s blank and doesn’t have focus.

In the following sections, you’ll explore many of these elements.

Static Text
Silverlight doesn’t include a Label control. The lynchpin for text display is
the TextBlock element, which you’ve seen at work in several examples over
the past three chapters.
The TextBlock element is refreshingly straightforward. It provides a Text
property, which accepts a string with the text you want to display.
<TextBlock Text="This is the content."></TextBlock>

Alternatively, you can supply the text as nested content:
<TextBlock>This is the content.</TextBlock>

The chief advantage of this approach is that you can add line breaks and
tabs to make large sections of text more readable in your code. Silverlight
follows the standard rules of XML, which means it collapses whitespace.
Thus a series of spaces, tabs, and hard returns is rendered using a single
space character. If you really do want to split text over lines at an explicit
position, you need to use separate TextBlock elements or use a LineBreak
inside the TextBlock element, as shown here:
<TextBlock>
 This is line 1.<LineBreak/>
 This is line 2.
</TextBlock>

 Silverlight 2 Visual Essentials 107

Note When using inline text, you can’t use the < and > characters,
because these have a specific XML meaning. Instead, you need to replace
the angled brackets with the character entities < (for the less than
symbol) and > (for the greater than symbol), which will be rendered as
< and >.

Unsurprisingly, text is colored black by default. You can change the color
of your text using the Foreground property. You can set it using a color
name in XAML:
<TextBlock x:Name="txt" Text="Hello World" Foreground="Red"></TextBlock>

or in code:
txt.Foreground = new SolidColorBrush(Colors.Red);

Instead of using a color name, you can use RGB values. You can also use
partially transparent colors that allow the background to show through.
Both topics are covered in Chapter 2 when discussing how to paint the
background of a panel.

Tip Ordinarily, you’ll use a solid color brush to fill in text. (The
default is obviously a black brush.) However, you can create more exotic
effects by filling in your text with gradients and tiled patterns using the
fancy brushes discussed in Chapter 7.

The TextBlock also provides a TextAlignment property (which allows you to
center or right-justify text), a Padding property (which sets the space
between the text and the outer edges of the TextBlock), and a few more
properties for controlling fonts, inline formatting, and text wrapping.

108 Silverlight 2 Visual Essentials

Font Properties
The TextBlock class defines font properties that determine how text appears
in a control. These properties are outlined in Table 4-2.

Table 4-2. Font-Related Properties of the Control Class

NAME DESCRIPTION

FontFamily The name of the font you want to use. Because
Silverlight is a client-side technology, it’s limited to just
nine built-in fonts (Arial, Arial Black, Comic Sans MS,
Courier New, Georgia, Lucida, Times New Roman,
Trebuchet MS, and Verdana). However, you can also
distribute custom fonts by doing a bit more work and
packing them up with your project assembly.

FontSize The size of the font in pixels. Ordinary Windows
applications measure fonts using points, which are
assumed to be 1/72 of an inch on a standard PC
monitor, while pixels are assumed to be 1/96 of an inch.
Thus, if you want to turn a Silverlight font size into a
more familiar point size, you can use a handy trick—just
multiply by 3/4. For example, a 20-pixel FontSize is
equivalent to a traditional 15-point font size.

FontStyle The angling of the text, as represented as a FontStyle
object. You get the FontStyle preset you need from the
static properties of the FontStyles class, which includes
Normal and Italic lettering. If you apply italic lettering
to a font that doesn’t provide an italic variant, Silverlight
will simply slant the letters. However, this behavior only
gives a crude approximation of a true italic typeface.

 Silverlight 2 Visual Essentials 109

NAME DESCRIPTION

FontWeight The heaviness of text, as represented as a FontWeight
object. You get the FontWeight preset you need from
the static properties of the FontWeights class. Normal
and Bold are the most obvious of these, but some
typefaces provide other variations such as Heavy, Light,
ExtraBold, and so on. If you use Bold on a font that
doesn’t provide a bold variant, Silverlight will paint a
thicker border around the letters, thereby simulating a
bold font.

FontStretch The amount that text is stretched or compressed, as
represented by a FontStretch object. You get the
FontStretch preset you need from the static properties
of the FontStretches class. For example,
UltraCondensed reduces fonts to 50% of their normal
width, while UltraExpanded expands them to 200%.
Font stretching is an OpenType feature that is not
supported by many typefaces. The built-in Silverlight
fonts don’t support any of these variants.

Obviously, the most important of these properties is FontFamily. A font
family is a collection of related typefaces—for example, Arial Regular,
Arial Bold, Arial Italic, and Arial Bold Italic are all part of the Arial font
family. Although the typographic rules and characters for each variation
are defined separately, the operating system realizes they’re related. As a
result, you can configure an element to use Arial Regular, set the
FontWeight property to Bold, and be confident that Silverlight will switch
over to the Arial Bold typeface.

110 Silverlight 2 Visual Essentials

When choosing a font, you must supply the full family name, as shown
here:
<TextBlock x:Name="txt" FontFamily="Times New Roman" FontSize="18">
 Some Bold Text</Button>

It’s much the same in code:
txt.FontFamily = "Times New Roman";
txt.FontSize = "18";

When identifying a FontFamily, a shortened string is not enough. That
means you can’t substitute Times or Times New instead of the full name
Times New Roman.
Optionally, you can use the full name of a typeface to get italic or bold, as
shown here:
<TextBlock FontFamily="Times New Roman Bold">A Button</TextBlock >

However, it’s clearer and more flexible to use just the family name and set
other properties (such as FontStyle and FontWeight) to get the variant you
want. For example, the following markup sets the FontFamily to Times New
Roman and sets the FontWeight to FontWeights.Bold:
<TextBlock FontFamily="Times New Roman" FontWeight="Bold">A Button</TextBlock >

Standard Fonts

Silverlight supports nine core fonts, which are guaranteed to render
correctly on any browser and operating system that supports Silverlight.
They’re shown in Figure 4-1.

 Silverlight 2 Visual Essentials 111

Figure 4-1. Silverlight’s built-in fonts

In the case of Lucida, there are two variants with slightly different names:
Lucida Sans Unicode is included with Windows, while Lucida Grande is an
almost identical font that’s included with Mac OS X. To allow this system
to work, the FontFamily property supports font fallback—in other words,
you can supply a comma-separated list of font names, and Silverlight will
used the first supported font. The default TextBlock font is equivalent to
setting the FontFamily property to the string “Lucida Sans Unicode, Lucida
Grande.”

112 Silverlight 2 Visual Essentials

You might think that you can use more specialized fonts, which may or
may not be present on the client’s computer. However, Silverlight doesn’t
allow this. If you specify a font that isn’t one of the nine built-in fonts, and
it isn’t included with your application assembly (more on that in the next
section), your font setting will be ignored. This happens regardless of
whether the client has an installed font with the appropriate name. This
makes sense—after all, using a font that’s only supported on some systems
could lead to an application that’s mangled or completely unreadable on
others, which is an easy mistake to make.

Font Embedding

If you want to use nonstandard fonts in your application, you can embed
them in your application assembly. That way, your application never has a
problem finding the font you want to use.
The embedding process is simple. First, you add the font file (typically, a
file with the extension .ttf) to your application and set the Build Action to
Content. (You can do this in Visual Studio by selecting the font file in
Solution Explorer and changing its Build Action setting in the Properties
page.)
Next, when you set the FontFamily property, you need to use this format:
FileName#FontName

The file is the XAP file that’s created with your compiled project files
when you run your application in Visual Studio. For example, if you have a
project named Elements that includes a font file with a font named Bayern,
you would use markup like this:
<TextBlock FontFamily="Elements.xap#Bayern">This is an embedded font</TextBlock>

Note that the font name is the name that’s defined for the font, not the
name of the font file (which is irrelevant).
Although this process is easy enough, font embedding raises obvious
licensing concerns. Unfortunately, most font vendors allow their fonts to be

 Silverlight 2 Visual Essentials 113

embedded in documents (such as PDF files) but not applications (such as
Silverlight assemblies). The problem is obvious—users can download the
XAP file by hand, unzip it, and install the font file on their local computers.
Silverlight doesn’t make any attempt to enforce font licensing, but you
should make sure you’re on solid legal ground before you redistribute a
font.
You can check a font’s embedding permissions using Microsoft’s free font
properties extension utility, which is available at
http://www.microsoft.com/typography/TrueTypeProperty21.mspx. Once you
install this utility, right-click any font file, and choose Properties to see
more detailed information about it. In particular, check the Embedding tab
for information about the allowed embedding for this font. Fonts marked
with Installed Embedding Allowed are suitable for Silverlight applications,
while fonts with Editable Embedding Allowed may not be. Consult with
the font vendor for licensing information about a specific font.

Note If all else fails, you can get around licensing issues by changing
your fonts to graphics. This works for small pieces of graphical text (for
example, headings), but isn’t appropriate for large blocks of text. You can
save graphical text as a bitmap in your favorite drawing program, or you
can convert text to a series of shapes using Silverlight’s Path element. You
can convert graphical text to a path using Expression Designer or
Expression Blend (simply select the TextBlock and choose Object Path
Convert to Path).

Underlining
You can add underlining to any font by setting the TextDecorations
property to Underline:
<TextBlock TextDecorations="Underline">Underlined text</TextBlock>

http://www.microsoft.com/typography/TrueTypeProperty21.mspx
http://www.microsoft.com/typography/TrueTypeProperty21.mspx

114 Silverlight 2 Visual Essentials

In WPF, there are several types of text decorations, including overlines and
strikethrough. However, at present Silverlight only includes underlining.
If you want to underline an individual word in a block of text, you’ll need
to use inline elements, as described in the next section.

Runs
In many situations, you’ll want to format individual bits of text, but keep
them together in a single paragraph in a TextBlock. To accomplish this, you
need to use a Run object inside the TextBlock element. Here’s an example
that formats several words differently (the result of which is shown in
Figure 4-2):
<TextBlock FontFamily="Georgia" FontSize="20" >
 This <Run FontStyle="Italic" Foreground="YellowGreen">is</Run> a
 <Run FontFamily="Comic Sans MS" Foreground="Red" FontSize="40">test.</Run>
</TextBlock>

Figure 4-2. Formatting text with runs

 Silverlight 2 Visual Essentials 115

A run supports the same key formatting properties as the TextBlock,
including Foreground, TextDecorations, and the five font properties
(FontFamily, FontSize, FontStyle, FontWeight, and FontStretch).
Technically, a Run object is not a true element. Instead, it’s an inline.
Silverlight provides two just types of inlines—the LineBreak class that you
saw earlier and the Run class. You can interact with the runs in your
TextBlock through the TextBlock.Inlines collection. In fact, the TextBlock
actually has two overlapping content models. You can set text through the
simple Text property, or you can supply it through the Inlines collection.
However, the changes you make in one affect the other, so if you set the
Text property, you’ll wipe out the current collection of inlines.

Note The inline classes are the only part of WPF’s document model
that survives in Silverlight.

Wrapping Text
To wrap text over several lines, you use the TextWrapping property.
Ordinarily, TextWrapping is set to TextWrapping.NoWrap, and content is
truncated if it extends past the right edge of the containing element. If you
use TextWrapping.Wrap, your content will be wrapped over multiple lines
when the width of the TextBlock element is constrained in some way. (For
example, you place it into a proportionately sized or fixed-width Grid cell.)
When wrapping, the TextBlock splits lines at the nearest space. If you have
a word that is longer than the available line width, the TextBlock will split
that word wherever it can to make it fit.
When wrapping text, the LineHeight and LineStackingStrategy properties
become important. The LineHeight property can set a fixed height (in
pixels) that will be used for every line. However, the LineHeight can only
be used to increase the line height—if you specify a height that’s smaller

116 Silverlight 2 Visual Essentials

than what’s required to show the text, your setting will be ignored. The
LineStackingStrategy determines what the TextBlock will do when dealing
with multiline content that uses different fonts. You can choose to use the
standard behavior, MaxHeight, which makes each line as high as it needs to
be to fit the tallest piece of text it contains, or you can use BlockLineHeight,
which sets the lines to one fixed height according to the font size of the
TextBlock itself. Shorter text will then have extra space, and taller text will
overlap with other lines. Figure 4-3 compares the different options.

Figure 4-3. Two different ways to calculate line height

 Silverlight 2 Visual Essentials 117

Content Controls
Content controls are a specialized type of control designed to hold (and
display) a piece of content. Technically, a content control is a control that
can contain a single nested element. The one-child limit is what
differentiates content controls from layout containers, which can hold as
many nested elements as you want.
All Silverlight layout containers derive from the Panel class, which gives
the support for holding multiple elements. Similarly, all content controls
derive from the ContentControl class. Figure 4-4 shows the class hierarchy.
As Figure 4-4 shows, several common controls are actually content
controls, including the Tooltip, Button, RadioButton, and the CheckBox.
There are also a few more specialized content controls, such as
ScrollViewer, and some controls that are designed for being used with
another specific control. (For example, the ListBox control holds
ListBoxItem content controls, the Calendar requires the DayButton and
MonthButton, and the DataGrid uses the DataGridCell, DataGridRowHeader,
and DataColumnHeader).

118 Silverlight 2 Visual Essentials

Figure 4-4. The hierarchy of content controls

 Silverlight 2 Visual Essentials 119

The Content Property
Whereas the Panel class adds the Children collection to hold nested
elements, the ContentControl class adds a Content property, which accepts a
single object. The Content property supports any type of object. It gives you
three ways to show content:
 Elements: If you use an object that derives from UIElement for the content of

a content control, that element will be rendered.
 Other objects: If you place a nonelement object into a content control, the

control will simply call ToString() to get the text representation for that
control. For some types of objects, ToString() produces a reasonable text
representation. For others, it simply returns the fully qualified class name of
the object, which is the default implementation.

 Other objects, with a data template: If you place a nonelement object into a
content control, and you set the ContentTemplate property with a data
template, the content control will render the data template and use the
expressions it contains to pull information out of the properties of your
object. This approach is particularly useful when dealing with collections of
data objects.

To understand how this works, consider the humble button. An ordinary
button may just use a simple string object to generate its content:
<Button Margin="3" Content="Text content"></Button>

This string is set as the button content and displayed on the button surface.

Tip When filling a button with unformatted text, you may want to
use the font-related properties that the Button class inherits from
ContentControl, which duplicate the TextBlock properties listed in Table 3-1.

120 Silverlight 2 Visual Essentials

However, you can get more ambitious by placing other elements inside the
button. For example, you can place an image inside using the Image class:
<Button Margin="3">
 <Image Source="happyface.jpg"></Image>
</Button>

Or you could combine text and images by wrapping them all in a layout
container like the StackPanel:
<Button Margin="3">
 <StackPanel>
 <TextBlock Margin="3" Text="Image and text button"></TextBlock>
 <Image Source="happyface.jpg" />
 <TextBlock Margin="3" Text="Courtesy of the StackPanel"></TextBlock>
 </StackPanel>
</Button>

If you want to create a truly exotic button, you could even place other
content controls such as text boxes and buttons inside (and nest still
elements inside these). It’s doubtful that such an interface would make
much sense, but it is possible.
At this point, you might be wondering whether the Silverlight content
model is really worth all the trouble. After all, you might choose to place
an image inside a button, but you’re unlikely to embed other controls and
entire layout panels. However, there are a few important advantages to the
content model.
For example, the previous markup placed a bitmap into a button. However,
this approach isn’t as flexible as creating a vector drawing out of
Silverlight shapes. Using a vector drawing, you can create a button image
that’s rescalable and can be changed programmatically (for example, with
different colors, a transform, or an animation). Using a vector-based button
opens you up to the possibility of creating a dynamic interface that
responds to state changes and user actions.

 Silverlight 2 Visual Essentials 121

The key fact you should understand now is that the vector drawing model
integrates seamlessly with content controls because they have the ability to
hold any element. For example, this markup creates a simple graphical
button that uses two diamond shapes (as shown in Figure 4-5):
<Button Margin="3" Height="70" Width="214">
 <Grid Margin="4">
 <Polygon Points="100,24 124,0 200,24 124,40"
 Fill="LightSteelBlue" />
 <Polygon Points="100,24 74,0 0,24 74,40"
 Fill="White"/>
 </Grid>
</Button>

Figure 4-5. A button with shape content

122 Silverlight 2 Visual Essentials

Clearly, in this case the nested content model is simpler than adding extra
properties to the Button class to support the different types of content. Not
only is the nested content model more flexible, but it also allows the Button
class to expose a simpler interface. And because all content controls
support content nesting in the same way, there’s no need to add different
content properties to multiple classes.
In essence, the nested content model is a trade. It simplifies the class model
for elements because there’s no need to use additional layers of inheritance
to add properties for different types of content. However, you need to use a
slightly more complex object model—elements that can be built out of
other nested elements.

Note You can’t always get the effect you want by changing the
content of a control. For example, even though you can place any content in
a button, a few details never change, such as the button’s shaded
background, its rounded border, and the mouse-over effect that makes it
glow when you move the mouse pointer over it. However, there’s another
way to change these built-in details—by applying a new control template.

Aligning Content
In Chapter 2, you learned how to align different controls in a container
using the HorizontalAlignment and VerticalAlignment properties, which are
defined in the base FrameworkElement class. However, once a control
contains content, there’s another level of organization to think about. You
need to decide how the content inside your content control is aligned with
its borders. This is accomplished using the HorizontalContentAlignment and
VerticalContentAlignment properties.
HorizontalContentAlignment and VerticalContentAlignment support the
same values as HorizontalAlignment and VerticalAlignment. That means
you can line content up on the inside of any edge (Top, Bottom, Left, or

 Silverlight 2 Visual Essentials 123

Right), you can center it (Center), or you can stretch it to fill the available
space (Stretch). These settings are applied directly to the nested content
element, but you can use multiple levels of nesting to create a sophisticated
layout. For example, if you nest a StackPanel in a Button element, the
Button.HorizontalContentAlignment determines where the StackPanel is
placed, but the alignment and sizing options of the StackPanel and its
children will determine the rest of the layout.
The Margin property allows you to add whitespace between adjacent
elements. Content controls use a complementary property named Padding,
which inserts space between the edges of the control and the edges of the
content. To see the difference, compare the following two buttons:
<Button Content="Absolutely No Padding"></Button>
<Button Padding="3" Content="Well Padded"></Button>

The button that has no padding (the default) has its text crowded up against
the button edge. The button that has a padding of 3 pixels on each side gets
a more respectable amount of breathing space.

Note The HorizontalContentAlignment, VerticalContentAlignment, and
Padding properties are all defined as part of the Control class, not the more
specific ContentControl class. That’s because there may be controls that
aren’t content controls but still have some sort of content. One example is
the TextBox—its contained text (stored in the Text property) is adjusted
using the alignment and padding settings you’ve applied.

Buttons
Silverlight recognizes three types of button controls: the familiar Button,
the CheckBox, and the RadioButton. All of these controls are content controls
that derive from ButtonBase.

124 Silverlight 2 Visual Essentials

The ButtonBase class includes only a few members. It defines the Click
event and adds support for commands, which allow you to wire buttons to
higher-level application tasks. Finally, the ButtonBase class adds a
ClickMode property, which determines when a button fires its Click event in
response to mouse actions. The default value is ClickMode.Release, which
means the Click event fires when the mouse is clicked and released.
However, you can also choose to fire the Click event mouse when the
mouse button is first pressed (ClickMode.Press) or, oddly enough, whenever
the mouse moves over the button and pauses there (ClickMode.Hover).

Note All button controls support access keys, which work similarly to
mnemonics in the Label control. You add the underscore character to
identify the access key. If the user presses Alt and the access key, a button
click is triggered.

The HyperlinkButton

The ordinary Button control is simple enough—you click it and it fires a
Click event that you handle in code. But what about the other variants that
Silverlight offers?
One of the simplest is the HyperlinkButton. When clicked, it directs the
browser to another web page, effectively ending the current Silverlight
application. The HyperlinkButton class adds two properties: NavigateUri (a
relative or absolute path that points to a web page) and TargetName (which,
optionally, identifies a bookmark in that page).
<HyperlinkButton Content="Buy Now" NavigateUri="shopping.aspx"></HyperlinkButton>

The HyperlinkButton doesn’t draw the standard button background. Instead,
it simply renders the content that you supply. If you use text in the
HyperlinkButton, it appears blue by default, but it’s not underlined. (Use the
TextDecorations property if you want that effect.)

 Silverlight 2 Visual Essentials 125

When you move the mouse over a HyperlinkButton, the mouse cursor
changes to the pointing hand. You can override this effect by setting the
Cursor property.

The ToggleButton and RepeatButton

Alongside Button and HyperlinkButton, three more classes derive from
ButtonBase:
 CalendarButtonBase, which is used to build the clickable month and day

buttons in the Calendar control.
 RepeatButton, which fires Click events continuously, as long as the button is

held down. Ordinary buttons fire one Click event per user click.
 ToggleButton, which represents a button that has two states (pushed or

unpushed). When you click a ToggleButton, it stays in its pushed state until
you click it again to release it. This is sometimes described as “sticky click”
behavior.

Both RepeatButton and ToggleButton are defined in the
System.Windows.Controls.Primitives namespace, which indicates they
aren’t often used on their own. Instead, they’re used to build more complex
controls by composition or extended with features through inheritance. For
example, the RepeatButton is used to build the higher-level ScrollBar
control (which, ultimately, is a part of the even higher-level ScrollViewer).
The RepeatButton gives the arrow buttons at the ends of the scrollbar their
trademark behavior—scrolling continues as long as you hold it down.
Similarly, the ToggleButton is used to derive the more useful CheckBox and
RadioButton classes described next. However, neither the RepeatButton nor
the ToggleButton is an abstract class, so you can use both of them directly in
your user interfaces or to build custom controls if the need arises.

The CheckBox

Both the CheckBox and the RadioButton are buttons of a different sort. They
derive from ToggleButton, which means they can be switched on or off by

126 Silverlight 2 Visual Essentials

the user, hence their “toggle” behavior. In the case of the CheckBox,
switching the control “on” means placing a check mark in it.
The CheckBox class doesn’t add any members, so the basic CheckBox
interface is defined in the ToggleButton class. Most important, ToggleButton
adds an IsChecked property. IsChecked is a nullable Boolean, which means
it can be set to true, false, or null. Obviously, true represents a checked
box, while false represents an empty one. The null value is a little
trickier—it represents an indeterminate state, which is displayed as a
shaded box. The indeterminate state is commonly used to represent values
that haven’t been set or areas where some discrepancy exists. For example,
if you have a check box that allows you to apply bold formatting in a text
application, and the current selection includes both bold and regular text,
you might set the check box to null to show an indeterminate state.
To assign a null value in Silverlight markup, you need to use the null
markup extension, as shown here:
<CheckBox IsChecked="{x:Null}" Content="A check box in indeterminate state">
</CheckBox>

Along with the IsChecked property, the ToggleButton class adds a property
named IsThreeState, which determines whether the user is able to place the
check box into an indeterminate state. If IsThreeState is false (the default),
clicking the check box alternates its state between checked and unchecked,
and the only way to place it in an indeterminate state is through code. If
IsThreeState is true, clicking the check box cycles through all three
possible states.
The ToggleButton class also defines three events that fire when the check
box enters specific states: Checked, Unchecked, and Indeterminate. In most
cases, it’s easier to consolidate this logic into one event handler by
handling the Click event that’s inherited from ButtonBase. The Click event
fires whenever the button changes state.

 Silverlight 2 Visual Essentials 127

The RadioButton

The RadioButton also derives from ToggleButton and uses the same
IsChecked property and the same Checked, Unchecked, and Indeterminate
events. Along with these, the RadioButton adds a single property named
GroupName, which allows you to control how radio buttons are placed into
groups.
Ordinarily, radio buttons are grouped by their container. That means if you
place three RadioButton controls in a single StackPanel, they form a group
from which you can select just one of the three. On the other hand, if you
place a combination of radio buttons in two separate StackPanel controls,
you have two independent groups on your hands.
The GroupName property allows you to override this behavior. You can use it
to create more than one group in the same container or to create a single
group that spans multiple containers. Either way, the trick is simple—just
give all the radio buttons that belong together the same group name.
Consider this example:
<StackPanel>
 <Border Margin="4" Padding="4" BorderBrush="Yellow" BorderThickness="1"
 CornerRadius="4">
 <StackPanel>
 <RadioButton Content="Group 1"></RadioButton>
 <RadioButton Content="Group 1"></RadioButton>
 <RadioButton Content="Group 1"></RadioButton>
 <RadioButton GroupName="Group2" Content="Group 2"></RadioButton>
 </StackPanel>
 </Border>
 <Border Margin="4" Padding="4" BorderBrush="Yellow" BorderThickness="1"
 CornerRadius="4">
 <StackPanel>
 <RadioButton Content="Group 3"></RadioButton>
 <RadioButton Content="Group 3"></RadioButton>
 <RadioButton Content="Group 3"></RadioButton>
 <RadioButton GroupName="Group2" Content="Group 2"></RadioButton>
 </StackPanel>

128 Silverlight 2 Visual Essentials

 </Border>
</StackPanel>

Here, there are two containers holding radio buttons, but three groups. The
final radio button at the bottom of each group box is part of a third group
(see Figure 4-6). In this example, it makes for a confusing design, but there
may be some scenarios where you want to separate a specific radio button
from the pack in a subtle way without causing it to lose its group
membership.

Figure 4-6. Grouping radio buttons

 Silverlight 2 Visual Essentials 129

Tooltips
Silverlight has a flexible model for tooltips (those infamous yellow boxes
that pop up when you hover over something interesting). Because tooltips
in Silverlight are content controls, you can place virtually anything inside a
tooltip. You can also tweak various timing settings to control how quickly
tooltips appear and disappear.
The easiest way to show a tooltip doesn’t involve using the ToolTip class
directly. Many elements, including all content controls, include a ToolTip
that you can set directly. For example, here’s a button that has a basic
tooltip:
<Button ToolTip="This is my tooltip" Content="I have a tooltip"></Button>

When you hover over this button, the text “This is my tooltip” appears in a
gray pop-up box.
If you want to supply more ambitious tooltip content, such as a
combination of nested elements, you need to break the ToolTip property out
into a separate element. Here’s an example that sets the ToolTip property of
a button using more complex nested content:
<Button Content="I have a fancy tooltip">
 <Button.ToolTip>
 <StackPanel>
 <TextBlock Margin="3" Text="Image and text"></TextBlock>
 <Image Source="happyface.jpg"></Image>
 <TextBlock Margin="3" Text="Image and text"></TextBlock>
 </StackPanel>
 </Button.ToolTip>
</Button>

As in the previous example, Silverlight implicitly creates a ToolTip object.
The difference is that in this case the ToolTip object contains a StackPanel
rather than a simple string.

130 Silverlight 2 Visual Essentials

Note Don’t put user-interactive controls in a tooltip because the
ToolTip page can’t accept focus. For example, if you place a button in a
ToolTip, the button will appear, but it isn’t clickable. (If you attempt to click
it, your mouse click will just pass through to the page underneath.) If you
want a tooltip-like page that can hold other controls, consider using the
Popup instead, which is discussed shortly in the section “The Popup.”

The ToolTip Control

The previous example shows how you can customize the content of a
tooltip, but what if you want to configure other ToolTip-related settings ?
You actually have two options. The first technique you can use is to
explicitly define the ToolTip element in your markup. That gives you the
chance to directly set a variety of ToolTip properties.
The ToolTip is a content control, so you can adjust size and alignment
properties (like Width, Height, MaxWidth, HoriztontalContentAlignment,
Padding, and so on), font (FontFamily, FontSize, FontStyle, and so on), and
color (Background and Foreground). You can also use the HorizontalOffset
and VerticalOffset properties to nudge the tooltip away from the mouse
pointer and into the position you want, with negative or positive values.
Using the ToolTip properties, the following markup creates a tooltip that
has no drop shadow but uses a transparent red background that lets the
underlying page (and controls) show through:
<Button Content="I have a fancy tooltip">
 <Button.ToolTip>
 <ToolTip Background="#60AA4030" Foreground="White">
 <StackPanel>
 <TextBlock Margin="3" Text="Image and text"></TextBlock>
 <Image Source="happyface.jpg"></Image>
 <TextBlock Margin="3" Text="Image and text"></TextBlock>
 </StackPanel>
 </ToolTip>

 Silverlight 2 Visual Essentials 131

 </Button.ToolTip>
</Button>

If you assign a name to your tooltip, you can also interact with it
programmatically. For example, you can use the IsEnabled property to
temporarily disable a ToolTip and IsOpen to programmatically show or hide
a tooltip (or just check whether the tooltip is open). You can also handle its
Opened and Closed events, which is useful if you want to generate the
content for a tooltip dynamically, just as it opens.

The ToolTipService

Some tooltip properties can’t be configured using the properties of the
ToolTip class. In this case, you need to use a different class, which is named
ToolTipService. ToolTipService allows you to configure the time delays
associated with the display of a tooltip. All the properties of the
ToolTipService class are attached properties, so you can set them directly in
your control tag, as shown here:
<Button ToolTipService.InitialShowDelay="1">
 ...
</Button>

The ToolTipService class defines the properties listed in Table 4-3.

Table 4-3. ToolTipService Properties

NAME DESCRIPTION

InitialShowDelay Sets the delay (in milliseconds) before this tooltip is
shown when the mouse hovers over the element.

ShowDuration Sets the amount of time (in milliseconds) that this
tooltip is shown before it disappears, if the user does
not move the mouse.

132 Silverlight 2 Visual Essentials

Table 4-3. continued

NAME DESCRIPTION

BetweenShowDelay Sets a time page (in milliseconds) during which the
user can move between tooltips without
experiencing the InitialShowDelay. For example, if
BetweenShowDelay is 4000, the user has five seconds
to move to another control that has a tooltip. If the
user moves to another control within that time
period, the new tooltip is shown immediately. If the
user takes longer, the BetweenShowDelay page
expires, and the InitialShowDelay kicks into action.
In this case, the second tooltip isn’t shown until after
the InitialShowDelay period.

ToolTip Sets the content for the tooltip. Setting
ToolTipService.ToolTip is equivalent to setting the
ToolTip property of an element.

The Popup

The Popup control has a great deal in common with the ToolTip control,
although neither one derives from the other.
Like the ToolTip, the Popup can hold a single piece of content, which can
include any Silverlight element. (This content is stored in the Popup.Child
property, rather than the ToolTip.Content property.) Also, like the ToolTip,
the content in the Popup can extend beyond the bounds of the page. Lastly,
the Popup can be placed using the same placement properties and shown or
hidden using the same IsOpen property.
The differences between the Popup and ToolTip are more important. They
include the following:

 Silverlight 2 Visual Essentials 133

 The Popup is never shown automatically: You must set the IsOpen property
for it to appear. The Popup does not disappear until you explicitly set its
IsOpen property to false.

 The Popup can accept focus: Thus, you can place user-interactive controls
in it, such as a Button. This functionality is one of the key reasons to use the
Popup instead of the ToolTip.

 The Popup is placed at the top-left of the page: You can move it down and
to the left using the HorizontalOffset and VerticalOffset properties.

Because the Popup must be shown manually, you may choose to create it
entirely in code. However, you can define it just as easily in XAML
markup—just make sure to include the Name property so you can
manipulate it in code. The placement of the Popup in your markup isn’t
important, because its top-left will always be aligned with the top-left
corner of the Silverlight content region.
<StackPanel Margin="20">
 <TextBlock TextWrapping="Wrap" MouseLeftButtonDown="txt_MouseLeftButtonDown"
 Text="Click here to open the PopUp."></TextBlock>

 <Popup x:Name="popUp" MaxWidth="200" HorizontalOffset="20" VerticalOffset="20">
 <TextBox Margin="10" MouseLeftButtonDown="popUp_MouseLeftButtonDown"
 Text="This is the PopUp."></TextBox>
 </Popup>
</StackPanel>

The only remaining detail is the relatively trivial code that shows the Popup
when the user clicks it, and the code that hides the Popup when it’s clicked:
private void txt_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 popUp.IsOpen = true;
}

private void popUp_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 popUp.IsOpen = false;
}

134 Silverlight 2 Visual Essentials

Figure 4-7 shows the Popup in action.

Figure 4-7. A tooltip-like effect with the Popup

List Controls
Controls that wrap collections of items generally derive from the
ItemsControl class. Silverlight provides a single example: the ListBox.
Oddly enough, it has no ComboBox for drop-down list display, although one
will certainly be developed in the future.
The ItemsControl class fills in the basic plumbing that’s used by all list-
based controls. Notably, it gives you two ways to fill the list of items. The
most straightforward approach is to add them directly to the Items
collection, using code or XAML. However, in Silverlight it’s more
common to use data binding. In this case, you set the ItemsSource property
to the object that has the collection of data items you want to display.
To add items to the ListBox, you can nest ListBoxItem elements inside the
ListBox element. For example, here’s a ListBox that contains a list of
colors:
<ListBox>
 <ListBoxItem Content="Green"></ListBoxItem>
 <ListBoxItem Content="Blue"></ListBoxItem>
 <ListBoxItem Content="Yellow"></ListBoxItem>

 Silverlight 2 Visual Essentials 135

 <ListBoxItem Content="Red"></ListBoxItem>
</ListBox>

Different controls treat their nested content in different ways. The ListBox
stores each nested object in its Items collection.

Note Unlike WPF (and HTML forms), the Silverlight ListBox does not
support multiple selection. It provides a SelectionMode property for future
use, but currently the only possible value is Single.

The ListBox is a remarkably flexible control. Not only can it hold
ListBoxItem objects, but it can also host any arbitrary element. This works
because the ListBoxItem class derives from ContentControl, which gives it
the ability to hold a single piece of nested content. If that piece of content is
a UIElement-derived class, it will be rendered in the ListBox. If it’s some
other type of object, the ListBoxItem will call ToString() and display the
resulting text.
For example, if you decided you want to create a list with images, you
could create markup like this:
<ListBox>
 <ListBoxItem>
 <Image Source="happyface.jpg"></Image>
 </ListBoxItem>
 <ListBoxItem>
 <Image Source="happyface.jpg"></Image>
 </ListBoxItem>
</ListBox>

The ListBox is actually intelligent enough to create the ListBoxItem objects
it needs implicitly. That means you can place your objects directly inside
the ListBox element. Here’s a more ambitious example that uses nested
StackPanel objects to combine text and image content:

136 Silverlight 2 Visual Essentials

<ListBox>
 <StackPanel Orientation="Horizontal">
 <Image Source="happyface.jpg" Width="30" Height="30"></Image>
 <TextBlock VerticalAlignment="Center" Text="A happy face"></TextBlock>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <Image Source="redx.jpg" Width="30" Height="30"></Image>
 <TextBlock VerticalAlignment="Center" Text="A warning sign"></TextBlock>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <Image Source="happyface.jpg" Width="30" Height="30"></Image>
 <TextBlock VerticalAlignment="Center" Text="A happy face"></TextBlock>
 </StackPanel>
</ListBox>

In this example, the StackPanel becomes the item that’s wrapped by the
ListBoxItem. This markup creates the list shown in Figure 4-8.

Figure 4-8. A list of images

 Silverlight 2 Visual Essentials 137

This ability to nest arbitrary elements inside list box items allows you to
create a variety of list-based controls without needing to use specialized
classes. For example, you can display a check box next to every item by
nesting the CheckBox element inside the ListBox.
There’s one caveat to be aware of when you use a list with different
elements inside. When you read the SelectedItem value (and the
SelectedItems and Items collections), you won’t see ListBoxItem objects—
instead, you’ll see whatever objects you placed in the list. In the previous
example, that means SelectedItem provides a StackPanel object.
When manually placing items in a list, it’s up to you whether you want to
place the items in directly or explicitly wrap each one in a ListBoxItem
object. The second approach is often cleaner, albeit more tedious. The most
important consideration is to be consistent. For example, if you place
StackPanel objects in your list, the ListBox.SelectedItem object will be a
StackPanel. If you place StackPanel objects wrapped by ListBoxItem
objects, the ListBox.SelectedItem object will be a ListBoxItem, so code
accordingly. And there’s a third option—you can place data objects inside
your ListBox and use a data template to display the properties you want.
The ListBoxItem offers a little bit of extra functionality from what you get
with directly nested objects. Namely, it defines an IsSelected property that
you can read (or set) and a Selected and Unselected event that tells you
when that item is highlighted. However, you can get similar functionality
using the members of the ListBox class, such as the SelectedItem (or
SelectedItems) property and the SelectionChanged event.

138 Silverlight 2 Visual Essentials

Text Controls
Silverlight includes two text-entry controls: the standard TextBox and the
slightly more enhanced WatermarkedTextBox.
Unlike the content controls you’ve seen, the text boxes are limited in the
type of content they can contain. A text box always stores a string
(provided by the Text property). You can change the alignment of that text
using the TextAlignment property, and you can use all the properties listed
earlier in the chapter in Table 4-2 to control the font of the text inside the
text box.
Ordinarily, the TextBox control stores a single line of text. (You can limit
the allowed number of characters by setting the MaxLength property.)
Unfortunately, it does not support automatic text wrapping. However, you
can allow multiline content by setting the AcceptsReturn property to true.
Now, when the user presses the Enter key, a line break wil be inserted.
Sometimes, you’ll create a text box purely for the purpose of displaying
text. In this case, set the IsReadOnly property to true to prevent editing. This
is preferable to disabling the text box by setting IsEnabled to false because
a disabled text box shows grayed-out text (which is more difficult to read)
and does not support selection (or copying to the clipboard).

Text Selection
As you already know, you can select text in any text box by clicking and
dragging with the mouse or holding down Shift while you move through
the text with the arrow keys. The TextBox class also gives you the ability to
determine or change the currently selected text programmatically, using the
SelectionStart, SelectionLength, and SelectedText properties.
SelectionStart identifies the zero-based position where the selection
begins. For example, if you set this property to 10, the first selected
character is the 11th character in the text box. The SelectionLength

 Silverlight 2 Visual Essentials 139

indicates the total number of selected characters. (A value of 0 indicates no
selected characters.) Finally, the SelectedText property allows you to
quickly examine or change the selected text in the text box.
You can react to the selection being changed by handling the
SelectionChanged event. Here’s an example that reacts to this event and
displays the current selection information:
private void txt_SelectionChanged(object sender, RoutedEventArgs e)
{
 if (txtSelection == null) return;

 txtSelection.Text = String.Format(
 "Selection from {0} to {1} is \"{2}\"",
 txt.SelectionStart, txt.SelectionLength, txt.SelectedText);
}

Figure 4-9 shows the result.

Figure 4-9. Selecting text

140 Silverlight 2 Visual Essentials

The WatermarkedTextBox
The WatermarkedTextBox derives from TextBox and adds a single feature: the
ability to display some content in the button when it’s empty and doesn’t
have focus. Usually, this content is a prompt that tells the user what to type
of information to enter (or simply indicates the information is still needed).
By default, a WatermarkedTextBox gets the watermark “<enter text here>”
displayed in light gray lettering. To supply a custom watermark, you set the
Watermark property. You can use ordinary text, in which case the watermark
will be displayed in light gray, or you can supply any element (with any
formatting you like). Here’s an example that defines the different
watermarks shown in Figure 4-10:
<StackPanel Margin="10">
 <WatermarkedTextBox Margin="3"></WatermarkedTextBox>
 <WatermarkedTextBox Margin="3"></WatermarkedTextBox>
 <WatermarkedTextBox Margin="3" Watermark="- Optional -"></WatermarkedTextBox>

 <WatermarkedTextBox Margin="3">
 <WatermarkedTextBox.Watermark>
 <StackPanel Orientation="Horizontal">
 <Image Source="redx.jpg" Width="30" Height="30" Opacity="0.4"></Image>
 <TextBlock VerticalAlignment="Center" FontSize="10" Foreground="LightBlue"
 Text="REQUIRED FIELD"></TextBlock>
 </StackPanel>
 </WatermarkedTextBox.Watermark>
 </WatermarkedTextBox>
</StackPanel>

 Silverlight 2 Visual Essentials 141

Figure 4-10. Simple and custom watermarks

Range-Based Controls
Silverlight includes two controls that use the concept of a range. These
controls take a numeric value that falls in between a specific minimum and
maximum value. These controls—ScrollBar and Slider—derive from the
RangeBase class (which itself derives from the Control class). The RangeBase
class adds a ValueChanged event, a Tooltip property, and the range
properties shown in Table 4-4.

142 Silverlight 2 Visual Essentials

Table 4-4. Properties of the RangeBase Class

NAME DESCRIPTION

Value This is the current value of the control (which must fall
between the minimum and maximum). By default, it starts
at 0. Contrary to what you might expect, Value isn’t an
integer—it’s a double, so it accepts fractional values. You
can react to the ValueChanged event if you want to be
notified when the value is changed.

Maximum This is the upper limit (the largest allowed value).

Minimum This is the lower limit (the smallest allowed value).

SmallChange This is the amount the Value property is adjusted up or
down for a “small change.” The meaning of a small
change depends on the control (and may not be used at
all). For the ScrollBar and Slider, this is the amount the
value changes when you use the arrow keys. For the
ScrollBar, you can also use the arrow buttons at either
end of the bar.

LargeChange This is the amount the Value property is adjusted up or
down for a “large change.” The meaning of a large change
depends on the control (and may not be used at all). For
the ScrollBar and Slider, this is the amount the value
changes when you use the Page Up and Page Down keys
or when you click the bar on either side of the thumb
(which indicates the current position).

Ordinarily, there’s no need to use the ScrollBar control directly. The
higher-level ScrollViewer control, which wraps two ScrollBar controls, is
typically much more useful. (The ScrollViewer was mentioned in Chapter
2.) However, the Slider is a specialized control that’s occasionally useful.
You might use it to set numeric values in situations where the number itself
isn’t particularly significant. For example, it makes sense to set the volume
in a media player by dragging the thumb in a slider bar from side to side.

 Silverlight 2 Visual Essentials 143

The general position of the thumb indicates the relative loudness (normal,
quiet, loud), but the underlying number has no meaning to the user.
Here’s an example that creates the horizontal slider shown in Figure 4-11:
<Slider Orientation="Horizontal" Minimum="0" Maximum="10" Width="100" />

Figure 4-11. A basic slider

Unlike WPF, the Silverlight slider doesn’t provide any properties for
adding tick marks. However, as with any control, you can change its
appearance while leaving its functionality intact using the control
templating feature.

Date Controls
Silverlight adds two date controls, Calendar and DateTimePicker (also
known as DatePicker), neither of which exists in the WPF control library.
Both are designed to allow the user to choose a single date.
The Calendar control displays a calendar that’s similar to what you see in
the Windows operating system (for example, when you configure the
system date). It shows a single month at a time and allows you to step

144 Silverlight 2 Visual Essentials

through from month to month (by clicking the arrow buttons) or jump to a
specific month (by clicking the month header to view an entire year, and
then clicking the month).
The DateTimePicker requires less space. It’s modeled after a simple text
box, which holds a date string in long or short date format. However, the
DateTimePicker provides a drop-down arrow that, when clicked, pops open
a full calendar view that’s identical to that shown by the Calendar control.
This popup is displayed over top of any other content, just like a drop-
down combo box.
Figure 4-12 shows the two display modes that the Calendar supports and
the two date formats that the DateTimePicker allows.

Figure 4-12. The Calendar and DatePicker

 Silverlight 2 Visual Essentials 145

The Calendar and DateTimePicker include properties that allow you to
determine which dates are shown and which dates are selectable (provided
they fall in a contiguous range). Table 4-5 lists the properties you can use.

Table 4-5. Properties of the Calendar and DateTimePicker Classes

PROPERTY DESCRIPTION

AreDatesInPastSelectable Controls whether the user can pick dates that are
later than the current date (true) or not (false).
The default is true. This property is only used
when the SelectableDateStart and
SelectableDateEnd properties are null.

DisplayDateStart and
DisplayDateEnd

Set the range of dates that are displayed in the
view from the first, earliest date to the last,
oldest date (DisplayDateEnd). The user won’t be
able to navigate to months that don’t have any
displayable dates. To show all dates, set
DisplayDateStart to DateTime.MinValue and
DisplayDateEnd to DateTime.MaxValue.

SelectableDateStart and
SelectableDateEnd

Set the range of dates that the user can select.
This range must be the same as or fall inside of
the displayed date range. Dates that are
displayable but not selectable are displayed as
dimmed and disabled.

SelectedDate Provides the selected date as a DateTime object
(or a null value if not date is selected). It can be
set programmatically, by the user clicking the
date in the calendar or by the user typing in a
date string (in the DatePicker).

DisplayDate Determines what month is shown in the calendar
view. If null, the month of the SelectedDate is
shown. If DisplayDate and SelectedDate are
both null, the current month is used.

146 Silverlight 2 Visual Essentials

Table 4-5. continued

PROPERTY DESCRIPTION

FirstDayOfWeek Determines the day of the week that will be
displayed at the start of each calendar row, in
the leftmost position.

IsTodayHighlighted Determines whether the calendar view uses
highlighting to point out the current date.

DisplayMode (Calendar
only)

Determines the initial display month of the
calendar. If set to Month, the Calendar shows the
standard single-month view. If set to Year, the
Calendar shows the months in the current year
(similar to when the user clicks the month
header). Once the user clicks a month, the
Calendar shows the full calendar view for that
month.

IsDropDownOpen
(DatePicker only)

Determines whether the calendar view drop-
down is open in the DatePicker. You can set this
property programmatically to show or hide the
calendar.

SelectedDateFormat
(DatePicker only)

Determines how the selected date will be
displayed in the text part of the DatePicker. You
can choose Short or Long. The actual display
format is based on the client computer’s regional
settings. For example, if you use Short, the date
might be rendered in the yyyy/mm/dd format or
dd/mm/yyyy. The long format generally includes
the month and day names.

 Silverlight 2 Visual Essentials 147

Note Don’t rely on the AreDatesInPastSelectable,
SelectableDateStart, and SelectableDateEnd properties to prevent all
invalid input. They use the clock on the client computer, which could be
inaccurate.

The date controls also provide a few different events. Most useful is
DateSelected, which both date controls support. You can react to
DateSelected to reject specific date selections, such as dates that fall on a
weekend:
private void Calendar_DateSelected(object sender, CalendarDateChangedEventArgs e)
{
 if (e.AddedDate != null)
 {
 if (e.AddedDate.Value.DayOfWeek == DayOfWeek.Saturday ||
 e.AddedDate.Value.DayOfWeek == DayOfWeek.Sunday)
 {
 lblError.Text = "Weekends are not allowed";

 // Revert to previous date selection.
 ((Calendar)sender).SelectedDate = e.RemovedDate;
 }
 }
}

The Calendar also adds a DisplayDateChanged event (when the user browses
to a new month). The DateTimePicker adds a CalendarOpened and
CalendarClosed event (which fire when the calendar drop-down is displayed
and closed) and a TextParseError event (which fires when the user types a
value in the text entry portion that can’t be interpreted as a valid date).
Ordinarily, invalid values are discarded when the user opens the calendar
view, but here’s an option that fills in some text to alert the user of the
problem:

148 Silverlight 2 Visual Essentials

private void DatePicker_TextParseError(object sender,
 DatePickerTextParseErrorEventArgs e)
 {
 lblError.Text = "'" + e.Text +
 "' is not a valid value because " + e.Exception.Message;
}

The Last Word
In this chapter, you saw all the fundamental Silverlight elements. You
considered several categories:
 The TextBlock, which allows you to display richly formatted text using built-

in and custom fonts
 Content controls that can contain nested elements, including various types of

buttons and the ToolTip
 List controls that contain a collection of items, such as the ListBox and the

ComboBox
 Text controls for text editing (the TextBox) and, optionally, watermark display

(the WatermarkedTextBox)
 Range-based controls that take a numeric value from a range, such as the

Slider

Although you haven’t had an exhaustive look at every detail of XAML
markup, you’ve learned enough to reap all its benefits.

 Silverlight 2 Visual Essentials 149

Chapter 5: The Application Model
Over the past five chapters, you’ve taken a detailed look at the different
types of visual elements you can put inside Silverlight pages. You’ve
learned how to use layout containers and common controls, and how to
respond to mouse and keyboard events. Now it’s time to take a second look
at the Silverlight application model, which shapes how your application is
deployed and hosted.
In this chapter, you’ll consider the application events that allow you to
respond when your application is created, unloaded, or runs into trouble
with an unhandled exception. Along the way, you’ll see how to use
initialization parameters, how to navigate from one page to another, and
how to show a custom splash screen. Next, you’ll take a detailed look at the
many options Silverlight provides for retrieving resources, including large
files (like images and video) and dependent assemblies. You’ll learn how
to include essential resources in your application package for easy
deployment or download them on demand to streamline performance.

Application Events
In Chapter 1, you took your first look at the life cycle of a Silverlight
application. Here’s a quick review:

1. The user requests the HTML entry page in the browser.
2. The Silverlight plug-in is loaded. It downloads the XAP file with your

application.
3. The Silverlight plug-in reads the AppManifest.xml file from the XAP to

find out what assemblies your application uses. It creates the Silverlight
runtime environment and then loads your application assembly (and any
dependencies) into it.

4. The Silverlight plug-in creates an instance of your custom application
class (which is defined in the App.xaml and App.xaml.cs files).

150 Silverlight 2 Visual Essentials

5. The default constructor of the application class raises the Startup event.
6. Your application handles the Startup event and creates the startup page.

From this point on, your page code takes over, until it encounters an
unhandled error (UnhandledException) or finally ends (Exit). These events—
Startup, UnhandledException, and Exit—are the only events that the
Application class provides.
If you look at the code in the App.cs file, you’ll see pregenerated code in
the application constructor. This code attaches event handlers to the three
application events:
 public App()
 {
 this.Startup += this.Application_Startup;
 this.Exit += this.Application_Exit;
 this.UnhandledException += this.Application_UnhandledException;

 InitializeComponent();
}

As with the page and element events you’ve considered in earlier chapters,
there are actually two ways to attach application event handlers. Instead of
using code, you could add event attributes to the XAML markup, as shown
here:
<Application ... x:Class="SilverlightApplication1.App"
 Startup="Application_Startup" >

In the following sections, you’ll see how you can write code that plugs into
the application events.

Application Startup
By default, the Application_Startup method simply creates the first page
and assign it to the Application.RootVisual property, ensuring that it
becomes the main application element.

 Silverlight 2 Visual Essentials 151

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new Page();
}

Although you can change the root visual by adding or removing elements,
you can’t reassign the RootVisual property. After the application starts, it’s
essentially read-only. However, you’ll learn how to manipulate the root
visual to simulate the effect of changing pages in the “Changing the Page”
section later in this chapter.

Application Shutdown
At some point, your Silverlight application ends. Most commonly, this
occurs when the user surfs to another page in the web browser or closes the
browser window. It also occurs if the user refreshes the page (effectively
abandoning the current instance of the application and launching a new
one), if the page runs JavaScript code that removes the Silverlight content
region or changes its source, or if an unhandled exception derails your
code.
Just before the application is released from memory, Silverlight gives you
the chance to run some code by responding to the Application.Exit event.
This event is commonly used to store user-specific information locally in
isolated storage, so it’s available the next time the user runs your
application.
The Exit event doesn’t provide any additional information in its event
arguments.

Unhandled Exceptions
Although you should use disciplined exception handling code in situations
where errors are possible (for example, when reading a file, downloading
web content, or accessing a web service), it’s not always possible to
anticipate all possible sources of error. If your application encounters an

152 Silverlight 2 Visual Essentials

error that isn’t handled, it will end, and the Silverlight content region will
revert to a blank space. If you’ve included JavaScript code that reacts to
potential errors from the Silverlight plug-in (as described in Chapter 1),
that code will run. Otherwise, you won’t receive any indication about the
error that’s just occurred.
The Application.UnhandledException event gives you a last-ditch chance to
respond to an exception before it reaches the Silverlight plug-in and
terminates your application. This code is notably different from the
JavaScript error-handling code that you may add to the page, because it has
the ability to mark an exception as handled. Doing so effectively
neutralizes the exception, preventing it from rising to the plug-in and
ending your application.
Here’s an example that checks the exception type and decides whether to
allow the application to continue:
public void App_UnhandledException(object sender,
 ApplicationUnhandledExceptionEventArgs e)
{
 if (e.ExceptionObject is FileNotFoundException)
 {
 // Suppress the exception and allow the application to continue.
 e.Handled = true;
 }
}

Ideally, an exception like this will be handled closer to where it occurs—
for example, in your page code. Application-level error handling is
awkward because it’s difficult to notify the user of the problem. Although
the application has access to the RootVisual property, it doesn’t know what
this object is.
If your application has a single page, the application could cast the root
visual to the appropriate type and call a custom method, like the
ReportError() method shown in this example:
((Page1)this.RootVisual).ReportError(e.ExceptionObject)

 Silverlight 2 Visual Essentials 153

You could then use this method to update the user interface with an error
message.
Another option is to make the RootVisual a simple layout container (like a
Grid) that includes two rows—a proportionately sized row that shows the
current page and an auto-sized row that shows any error message. You’ll
see how to use this pattern later in this chapter, in the “Changing the Page”
section.

XAML Resources
Although the most important part of your application is the logic in the
code-behind file (App.xaml.cs), there is one ingredient you want to add to
the application markup file (App.xaml)—application resources.
XAML allows you to define objects in a resources collection and then use
them in your markup. Resources allow you to centralize changing details
(like vector drawings and formatting preferences), and they make it easier
to reuse them throughout your markup.
Resources use a hierarchical lookup system. In other words, when you use
a resource in an element, Silverlight checks the resources in that element,
then those in that element’s container, and so on, eventually ending up at
the resources collection of the top-level user control that represents your
page. However, resource lookup doesn’t stop there. It continues for one
more level, to the application resources collection, which is defined in the
App.xaml collection. For instance, here’s an example that defines a brush in
the application resources collection:
<Application xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SilverlightApplication1.App">
 <Application.Resources>
 <LinearGradientBrush x:Key="PageBackgroundBrush">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />

http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/winfx/2006/xaml

154 Silverlight 2 Visual Essentials

 <GradientStop Offset="1.00" Color="Purple" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Application.Resources>
</Application>

The advantage of placing resources in the application collection is that
they’re completely removed from the markup in your page, and they can be
reused in all the pages in your application:
<Grid Name="grid1" Background="{StaticResource PageBackgroundBrush}">

Furthermore, pages can selectively override a resource by defining a
replacement with the same name in their resource collections.
Unfortunately, Silverlight doesn’t currently allow you to merge resource
dictionaries, which means there’s no way to split your application
resources into separate files and then merge them into your application
(which is possible in WPF).

Note XAML resources shouldn’t be confused with the binary resources
you’ll explore later in this chapter. XAML resources are objects that are
declared in your markup. Binary resources are nonexecutable files that are
inserted into your assembly or XAP file when your project is compiled.

Application Tasks
Now that you understand the lifecycle of a Silverlight application and the
content of the App.xaml and App.xaml.cs files, you’re ready to take a look at
a few common scenarios. In the following sections, you’ll consider how
you can process initialization parameters, support page navigation, and
show a splash screen while your application is loading.

 Silverlight 2 Visual Essentials 155

Accessing the Current Application
You can retrieve a reference to the application object at any time, at any
point in your code, using the static Application.Current property. However,
the application object is typed as a System.Windows.Application object. To
use any custom properties or methods that you’ve added to your derived
application class, you must cast the reference to the App type:
((App)Application.Current).DoSomething()

Along with the Current property, the Application class also provides three
more important members:
 Host: The Host property allows you to interact with the browser, and through

it the rest of the HTML content on the web page.
 GetResourceStream(): This method is used to retrieve resources in code.
 LoadComponent(): This method accepts a XAML file and instantiates the

corresponding elements (much as Silverlight does automatically when you
create a page class and the constructor calls the InitializeComponent()
method). You’ll see an example that uses this method.

Initialization Parameters
The Startup event passes in a StartupEventArgs object that includes one
additional detail—initialization parameters. This mechanism allows the
page that hosts the Silverlight control to pass in custom information. This is
particularly useful if you host the same Silverlight application on different
pages or you want the Silverlight application to vary based on user-specific
or session-specific information. For example, you might customize the
application’s view depending on whether users are entering from the
customers page or the employees page. Or, you might choose to load up
different information based on the product that the user is currently
viewing. Just remember that the initialization parameters come from the
tags of the HTML entry page, and a malicious user can alter them.

156 Silverlight 2 Visual Essentials

For example, imagine you want to pass a ViewMode parameter that has two
possible values, Customer or Employee, as represented by this
enumeration:
public enum ViewMode
{
 Customer, Employee
}

You’ll need to change a variety of details based on this information, so it
makes sense to store it somewhere that’s accessible throughout your
application. The logical choice is to add a property to your custom
application class, as shown here:
private ViewMode viewMode = ViewMode.Customer;
public ViewMode ViewMode
{
 get { return viewMode; }
}

This property defaults to customer view, so it only needs to be changed if
the web page specifically requests the employee view.
To pass the parameter into your Silverlight application, you need to add a
<param> element to the markup in the Silverlight content region. This
parameter must have the name initParams. Its value is a comma-separated
list of name-value pairs that set your custom parameters. For example, to
add a parameter named viewMode, you would add the following line (shown
in bold) to your markup:
<div id="silverlightControlHost">
 <object data="data:application/x-silverlight,"
 type="application/x-silverlight-2-b1" width="100%" height="100%">
 <param name="source" value="TransparentSilverlight.xap"/>
 <param name="onerror" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="initParams" value=" viewMode=Customer" />
 ...
 </object>

 Silverlight 2 Visual Essentials 157

 <iframe style='visibility:hidden;height:0;width:0;border:0px'></iframe>
 </div>

Then, you can retrieve this from the StartupEventArgs.InitParams
collection. However, you must check first that it exists:
private void Application_Startup(object sender, StartupEventArgs e)
{
 // Take the view mode setting and store in an application property.
 if (e.InitParams.ContainsKey("viewMode"))
 {
 string view = e.InitParams["viewMode"];
 if (view == "Employee") this.view = ViewMode.Employee;
 }

 // Create the root page.
 this.RootVisual = new Page();
}

If you have many possible values, you can use the following leaner code to
convert the string to the corresponding enumeration value, assuming the
text matches exactly:
string view = e.InitParams["viewMode"];
try
{
 this.viewMode = (ViewMode)Enum.Parse(typeof(ViewMode), view, true);
}
catch { }

Now, different pages are free to pass in a different parameter and launch
your application with different view settings (see Figure 5-1). Because the
view information is stored as a property in the custom application class
(named App), you can retrieve it anywhere in your application:
lblViewMode.Text = "Current view mode: " +
 ((App)Application.Current).ViewMode.ToString();

158 Silverlight 2 Visual Essentials

Figure 5-1. Displaying an initialization parameter

If you have more than one initialization parameter, simply pass them all in
one comma-delimited string. Initialization values should be made up of
alphanumeric characters. There’s currently no support for escaping special
characters like commas in parameter values.
<param name="initParams" value="startPage=Page1,viewMode=Customer" />

Now the event handler for the Startup event can retrieve the StartPage
value and use it to choose the application’s root page. You can load the
correct page using a block of conditional logic that distinguishes between
the available choices, or you can write a more general solution that uses
reflection to attempt to create the class with the requested name, as shown
here:

 Silverlight 2 Visual Essentials 159

UserControl startPage = null;
if (e.InitParams.ContainsKey("startPage"))
{
 try
 {
 // Create an instance of the page.
 Type type = this.GetType();
 Assembly assembly = type.Assembly;
 startPage = (UserControl)assembly.CreateInstance(
 type.Namespace + "." + startPageName);
 }
 catch
 {
 startPage = null;
 }
}
// If no parameter was supplied or the class couldn't be created, use a default.
if (startPage == null) startPage = new MenuPage;

this.RootVisual = startPage;

Changing the Page
Once you’ve set the RootVisual property and your application has finished
loading up, you can’t change it. That means there’s no way to unload a
page and replace it with a new one. However, you can achieve much the
same effect by changing what you use for your root visual. Instead of
setting it with a custom user control, you can use something a bit more
flexible—a simple container like the Border or layout panel like the Grid.
Here’s an example of the latter approach:
// This Grid will host your pages.
private Grid rootVisual = new Grid();

private void Application_Startup(object sender, StartupEventArgs e)
{
 // Load the first page.
 this.RootVisual = rootVisual;
 rootVisual.Children.Add(new Page());
}

160 Silverlight 2 Visual Essentials

Now, you can switch to another page by removing the first page from the
Grid and adding a different one. To make this process relatively
straightforward, you can add a static method like this to the App class:
public static void Navigate(UserControl newPage)
{
 // Get the current application object and cast it to
 // an instance of the custom (derived) App class.
 App currentApp = (App)Application.Current;

 // Change the currently displayed page.
 currentApp.rootVisual.Children.Clear();
 currentApp.rootVisual.Children.Add(newPage);
}

Now you can navigate at any point using code like this:
App.Navigate(new Page2());

Retaining Page State

If you plan to allow the user to navigate frequently between complex
pages, it makes more sense to create them once and keep the page instance
in memory until later. (This also has the sometimes-important side effect of
maintaining that page’s current state, including all the values in any input
controls.) To implement this pattern, you first need a system to identify
pages. You could fall back on string names, but an enumeration gives you
better error prevention:
public enum Pages
{
 MainWindow, ReviewPage, AboutPage
}

You can then store the pages of your application in private fields in your
custom application class. Here’s a simple dictionary that does the trick:
private static Dictionary<Pages, UserControl> pageCache =
 new Dictionary<Pages,UserControl>();

 Silverlight 2 Visual Essentials 161

In your Navigate() method, create the page only if it needs to be created—
in other words, the corresponding private field is null.
public static void Navigate(Pages newPage)
{
 // Get the current application object and cast it to
 // an instance of the custom (derived) App class.
 App currentApp = (App)Application.Current;

 // Check if the page has been created before.
 if (!pageCache.ContainsKey(newPage))
 {
 // Create the first instance of the page,
 // and cache it for future use.
 Type type = currentApp.GetType();
 Assembly assembly = type.Assembly;
 pageCache[newPage] = (UserControl)assembly.CreateInstance(
 type.Namespace + "." + newPage.ToString());
 }

 // Change the currently displayed page.
 currentApp.rootVisual.Children.Clear();
 currentApp.rootVisual.Children.Add(pageCache[newPage]);
}

Now you can navigate by indicating the page you want with the Pages
enumeration:
App.Navigate(Pages.MainWindow);

Because there’s only one version of the page ever created, and it’s kept in
memory over the lifetime of the application, all the page’s state remains
intact when you navigate away and back again (see Figure 5-2).

162 Silverlight 2 Visual Essentials

Figure 5-2. Moving from one page to another

Browser History

The only limitation with the navigation methods described in this section is
the fact that the browser has no idea you’ve changed from one page to
another. If you want to allow the user to go back, it’s up to you to add the
controls that do it. The browser’s Back button will only send you to the
previous HTML page (thereby exiting your Silverlight application). If you
want to create an application that integrates more effectively with the
browser and supports the Back button, it is possible—but you’ll need the
HTML interaction techniques.

Tip You can add a dash of Silverlight animation and graphics to
create a more pleasing transition between pages, such as a gentle fade or
wipe.

 Silverlight 2 Visual Essentials 163

Splash Screens
If a Silverlight application is small, it will be downloaded quickly and
appear in the browser. If a Silverlight application is large, it may take a few
seconds to download. As long as your application takes longer than 500
milliseconds to download, Silverlight will show an animated splash screen.
The built-in splash screen isn’t too exciting—it’s little more than a
percentage that tells you how much of the application has downloaded so
far. However, you can easily create your own custom splash screen.
Essentially, a splash screen is a XAML file with the graphical content you
want to display and a dash of JavaScript code that updates the splash screen
as the application is downloaded. You can’t use C# code at this point,
because the management Silverlight programming environment hasn’t been
initialized yet.
Furthermore, the XAML file for your splash screen can’t be a part of your
Silverlight XAP file, because the XAP file is still in the process of being
downloaded. Instead, the splash screen XAML must be in a separate file
that’s placed alongside your XAP file at the same web location.

Note Testing a custom splash screen requires a bit of work.
Ordinarily, you won’t see the splash screen while testing because the
application is sent to the browser too quickly. To slow down your application
enough to see the splash screen, you need to first ensure that you’re using
an ASP.NET test site, which ensures that your Silverlight application is
hosted by Visual Studio test web server (as described in Chapter 1). Then,
you need to add multiple large resource files to your Silverlight project—
say, a handful of MP3 files—and set the build action of each one to Resource
so it’s added to the XAP file.

164 Silverlight 2 Visual Essentials

Resources
As you learned in Chapter 1, a Silverlight application is actually a package
of files that’s archived using ZIP compression and stored as a single file
with the extension .xap. In a simple application, the .xap file has little more
than a manifest (which list the files your project uses) and your application
assembly. However, there’s something else you can place in the XAP
file—resources.
A XAP resource is a distinct file that you want to make available to your
compiled application. Common examples include graphical assets—
images, sounds, and video files that you want to display in your user
interface.
However, using resources can be unnecessarily complicated because of the
wealth of different options Silverlight provides for storing them. Here’s a
quick roundup of your options:
 In the application assembly: The resource file is embedded in the compiled

DLL file for your project, such as SilverlightApplication1.dll. This is the
default approach.

 In the application package: The resource file is placed in the XAP file
alongside your application assembly. It’s still just as easy to deploy, but now
it’s a bit easier to manage, because you replace or modify your assets by
editing the XAP file without compiling your application.

 On the site of origin: The resource file is placed on the web site alongside
your XAP file. Now you have more deployment headaches, because you need
to make sure you deploy both the XAP file and the resource file. However,
you gain the ability to use your resource in other ways—for example, you can
use an image in ordinary HTML web pages or make videos available for easy
downloading. You can reduce the size of the initial XAP download, which is
important if the resources are large.

These aren’t all your options. You can also place resources in other
assemblies that your application uses. (This approach gives you more

 Silverlight 2 Visual Essentials 165

advanced options for controlling the way you share content between
different Silverlight applications.)

Class Library Assemblies
So far, all the examples you’ve seen in this book have placed all their code
into a single assembly. For a small or modest-sized Silverlight application,
this straightforward design makes good sense. However, it’s not hard to
imagine that you might want to factor out certain functionality and place it
in a separate class library assembly. Usually, you’ll take this step because
you want to reuse that functionality with more than one Silverlight
application. Alternatively, you might just want to separate it so it can be
coded, compiled, debugged, and revised separately, which is particularly
important if that code is being created by a different development team.
Creating a Silverlight class library is easy. In fact, it’s essentially the same
process you follow to create and use class library assemblies in ordinary
.NET applications. First, create a new project in Visual Studio using the
Silverlight Class Library project template. Then, add a reference in your
Silverlight application that points to that project or assembly. The
dependent assembly will be copied into the XAP package when you build
your application.

Using Resources in an Assembly
Class libraries give you another way to share resources. You can embed a
resource in a class library and then retrieve it in your application. In fact,
this technique is easy—the only trick is constructing the right URIs. Here’s
the format to use:
/ClassLibraryFileName;component/ResourceFileName

The leading slash represents the root of the XAP file. This URI points to
the dependent assembly in that file, and then indicates a resource in that
assembly.

166 Silverlight 2 Visual Essentials

For example, consider the ResourceClassLibrary assembly in Figure 5-3. It
includes a resource named happyface.jpg, and that file has a build action of
Resource.

Figure 5-3. A resource in a XAP file

Here’s an image file that uses the resource from the class library:
<Image Source="/ResourceClassLibrary;component/happyface.jpg"></Image>

 Silverlight 2 Visual Essentials 167

Downloading Assemblies on Demand
In some situations, the code in a class library is used infrequently, or
perhaps not at all for certain users. However, if the class library contains a
significant amount of code or (more likely) has large embedded resources
like graphics, including it with your application will increase the size of
your XAP file and lengthen download times needlessly. In this case, you
might want to create a separate component assembly—one that isn’t
downloaded until you need it. This scenario is similar to on-demand
resource downloading. You place the separate resource in a separate file
outside of the XAP file, but on the same web site.
Before you use assembly downloading, you need to make sure that the
dependent assembly won’t be placed in the XAP file. To do so, select the
project reference that points to the assembly. In the Properties window, set
Copy Local to false.
To implement on-demand downloading of assemblies, you need to use the
WebClient in conjunction with the AssemblyPart class. The WebClient
retrieves the assembly, and the assembly makes it available for
downloading.
string uri = Application.Current.Host.Source.AbsoluteUri;
int index = url.IndexOf("/ClientBin");
// In this example, the URI includes the /ClientBin portion, because we've
// decided to place the DLL in the ClientBin folder.
uri = uri.Substring(0, index + 10) + "/ResourceClassLibrary.dll";

// Begin the download.
WebClient webClient = new WebClient();
webClient.OpenReadCompleted += webClient_OpenReadCompleted;
webClient.OpenReadAsync(new Uri(url));

When the assembly is downloaded, you use the AssemblyPart.Load()
method to load it into the current application domain:

168 Silverlight 2 Visual Essentials

private void webClient_OpenReadCompleted(object sender,
 OpenReadCompletedEventArgs e)
{
 if (e.Error != null)
 {
 // (Add code to display error or downgrade gracefully.)
 }
 else
 {
 AssemblyPart assemblypart = new AssemblyPart();
 assemblypart.Load(e.Result);
 // (Now you can use code as though the assembly was always there.)
 }
}

Once you’ve performed this step, you can retrieve resources from your
assembly and instantiate types from it. It’s as though your assembly had
been a part of the XAP file from the start.
Once again, it’s important to keep track of whether you’ve downloaded an
assembly, so you don’t attempt to download it more than once. Some
applications “daisy chain” assemblies, so one application downloads other
dependent assemblies on demand, and these assemblies download
additional assemblies when they need them.

The Last Word
In this chapter, you explored the Silverlight application model. You
reexamined the application object, and considered how you can react to
application events and store application resources. Next, you considered
practical techniques that depend on the application class, such as passing
initialization parameters from different web pages and moving from one
page to another in your Silverlight application. Finally, you explored the
resource system that Silverlight uses, and considered the many options for
deploying resources and class libraries, from placing them alongside your
assembly to downloading them only when needed.

 Silverlight 2 Visual Essentials 169

Chapter 6: Shapes and Geometries
Silverlight’s 2D drawing support is the basic foundation for many of its
more sophisticated features, such as custom-drawn controls, interactive
graphics, and animation. Even if you don’t plan to create customized art for
your application, you need to have a solid understanding of Silverlight’s
drawing fundamentals. You’ll use it to add professional yet straightforward
touches, like reflection. You’ll also need it to add interactivity to your
graphics—for example, to make shapes move or change in response to user
actions.
Silverlight supports a surprisingly large subset of the drawing features from
WPF, its more capable sibling. In this chapter, you’ll explore the shape
model, which allows you to construct graphics out of rectangles, ellipses,
lines, and curves. You’ll also see how you can convert existing vector art to
the XAML format you need, which allows you to reuse existing graphics
rather than build them from scratch.

Basic Shapes
The simplest way to draw 2D graphical content in a Silverlight user
interface is to use shapes: dedicated classes that represent simple lines,
ellipses, rectangles, and polygons. Technically, shapes are known as
drawing primitives. You can combine these basic ingredients to create
more complex graphics.
The most important detail about shapes in Silverlight is the fact that they
all derive from FrameworkElement. As a result, shapes are elements. This has
a number of important consequences:
 Shapes draw themselves: You don’t need to manage the invalidation and

painting process. For example, you don’t need to manually repaint a shape
when content moves, the page is resized, or the shape’s properties change.

170 Silverlight 2 Visual Essentials

 Shapes are organized in the same way as other elements: In other words,
you can place a shape in any of the layout containers you learned about in
Chapter 2 (although the Canvas is obviously the most useful container
because it allows you to place shapes at specific coordinates, which is
important when you’re building a complex drawing out of multiple pieces).

 Shapes support the same events as other elements: That means you don’t
need to go to any extra work to deal with key presses, mouse movements, and
mouse clicks. You can use the same set of events you’d use with any element.

Silverlight uses a number of optimizations to make 2D drawing as fast as
possible. For example, because shapes often overlap in complex drawings,
Silverlight uses sophisticated algorithms to determine when part of a shape
won’t be visible, and thereby avoid the overhead of rendering and then
overwriting it with another shape.

The Shape Classes
Every shape derives from the abstract System.Windows.Shapes.Shape class.
Figure 6-1 shows the inheritance hierarchy for shapes.
As you can see, there’s a relatively small set of classes that derive from the
Shape class. Line, Ellipse, and Rectangle are all straightforward, while
Polyline is a connected series of straight lines, and Polygon is a closed
shape made up of a connected series of straight lines. Finally, the Path class
is an all-in-one superpower that can combine basic shapes in a single
element.

 Silverlight 2 Visual Essentials 171

Figure 6-1. The Silverlight shape classes

Although the Shape class can’t do anything on its own, it defines a small set
of important properties, which are listed in Table 6-1.

Table 6-1. Shape Properties

NAME DESCRIPTION

Fill Sets the brush object that paints the surface of the
shape (everything inside its borders).

Stroke Sets the brush object that paints the edge of the
shape (its border).

StrokeThickness Sets the thickness of the border, in pixels.

StrokeStartLineCap
and
StrokeEndLineCap

Determine the contour of the edge of the beginning
and end of the line. These properties only have an
effect for the Line, the Polyline, and (sometimes) the
Path shapes. All other shapes are closed, and so have
no starting and ending point.

172 Silverlight 2 Visual Essentials

Table 6-1. continued

NAME DESCRIPTION

StrokeDashArray,
StrokeDashOffset,
and StrokeDashCap

Allow you to create a dashed border around a shape.
You can control the size and frequency of the dashes
and how the edge where each dash line begins and
ends is contoured.

StrokeLineJoin and
StrokeMiterLimit

Determine the contour of the corners of a shape.
Technically, these properties affect the vertices where
different lines meet, such as the corners of a
Rectangle. These properties have no effect for shapes
without corners, such as Line and Ellipse.

Stretch

Determines how a shape fills its available space. You
can use this property to create a shape that expands
to fit its container. However, you’ll rarely use the
Stretch property, because each shape uses the
default value that makes most sense for it.

GeometryTransform

Allows you to apply a transform object that changes
the coordinate system that’s used to draw a shape.
This allows you to skew, rotate, or displace a shape.
Transforms are particularly useful when animating
graphics. You’ll learn about transforms in Chapter 7.

Rectangle and Ellipse
The Rectangle and Ellipse are the two simplest shapes. To create either
one, set the familiar Height and Width properties (inherited from
FrameworkElement) to define the size of your shape, and then set the Fill or
Stroke property (or both) to make the shape visible. You’re also free to use
properties such as MinHeight, MinWidth, HorizontalAlignment,
VerticalAlignment, and Margin.

 Silverlight 2 Visual Essentials 173

Note If you fail to supply a brush for the Stroke or Fill property, your
shape won’t appear at all.

Here’s a simple example that stacks an ellipse on a rectangle (see Figure 6-
2) using a StackPanel:
<StackPanel>
 <Ellipse Fill="Yellow" Stroke="Blue"
 Height="50" Width="100" Margin="5" HorizontalAlignment="Left"></Ellipse>
 <Rectangle Fill="Yellow" Stroke="Blue"
 Height="50" Width="100" Margin="5" HorizontalAlignment="Left"></Rectangle>
</StackPanel>

Figure 6-2. Two simple shapes

The Ellipse class doesn’t add any properties. The Rectangle class adds just
two: RadiusX and RadiusY. When set to nonzero values, these properties
allow you to create nicely rounded corners.

174 Silverlight 2 Visual Essentials

You can think of RadiusX and RadiusY as describing an ellipse that’s used
just to fill in the corners of the rectangle. For example, if you set both
properties to 10, Silverlight draws your corners using the edge of a circle
that’s 10 pixels wide. As you make your radius larger, more of your
rectangle will be rounded off. If you increase RadiusY more than RadiusX,
your corners will round off more gradually along the left and right sides
and more sharply along the top and bottom edge. If you increase the
RadiusX property to match your rectangle’s width, and increase RadiusY to
match its height, you’ll end up converting your rectangle into an ordinary
ellipse.
Figure 6-3 shows a few rectangles with rounded corners.

Figure 6-3. Rounded corners

 Silverlight 2 Visual Essentials 175

Sizing and Placing Shapes
As you already know, hard-coded sizes are usually not the ideal approach
to creating user interfaces. They limit your ability to handle dynamic
content, and they make it more difficult to localize your application into
other languages.
When drawing shapes, these concerns don’t always apply. Often, you’ll
need tighter control over shape placement. However, in many cases you
can make your design a little more flexible. Both the Ellipse and the
Rectangle have the ability to size themselves to fill the available space.
If you don’t supply the Height and Width properties, the shape is sized based
on its container. For example, if you use the proportional row-sizing
behavior of the Grid, you can create an ellipse that fills a page with this
stripped-down markup:
<Grid>
 <Ellipse Fill="Yellow" Stroke="Blue"></Ellipse>
</Grid>

Here, the Grid fills the entire page. The Grid contains a single
proportionately sized row, which fills the entire Grid. Finally, the ellipse
fills the entire row.
This sizing behavior depends on the value of the Stretch property (which is
defined in the Shape class). By default, it’s set to Fill, which stretches a
shape to fill its container if an explicit size isn’t indicated. Table 6-2 lists
all your possibilities.

176 Silverlight 2 Visual Essentials

Table 6-2. Values for the Stretch Enumeration

NAME DESCRIPTION

Fill
Your shape is stretched in width and height to fit its
container exactly. (If you set an explicit height and width,
this setting has no effect.)

None
The shape is not stretched. Unless you set a nonzero width
and height (using the Height and Width or MinHeight and
MinWidth properties), your shape won’t appear.

Uniform

The width and height are sized up proportionately until the
shape reaches the edge of the container. If you use this
with an ellipse, you’ll end up with the biggest circle that fits
in the container. If you use it with a rectangle, you’ll get the
biggest possible square. (If you set an explicit height and
width, your shape is sized within those bounds. For
example, if you set a Width of 10 and a Height of 100 for a
rectangle, you’ll only get a 10×10 square.)

UniformToFill

The width and height are sized proportionately until the
shape fills all the available height and width. For example, if
you place a rectangle with this size setting into a page that’s
100×200 pixels, you’ll get a 200×200 rectangle, and part of
it will be clipped off. (If you set an explicit height and width,
your shape is sized within those bounds. For example, if you
set a Width of 10 and a Height of 100 for a rectangle, you’ll
get a 100×100 rectangle that’s clipped to fit an invisible
10×100 box.)

Figure 6-4 shows the difference between Fill, Uniform, and UniformToFill.

 Silverlight 2 Visual Essentials 177

Figure 6-4. Filling three cells in a Grid

Usually, a Stretch value of Fill is the same as setting both
HorizontalAlignment and VerticalAlignment to Stretch. The difference
occurs if you choose to set a fixed Width or Height on your shape. In this
case, the HorizontalAlignment and VerticalAlignment values are simply
ignored. However, the Stretch setting still has an effect—it determines how
your shape content is sized within the bounds you’ve given it.

Tip In most cases, you’ll size a shape explicitly or allow it to stretch
to fit. You won’t combine both approaches.

178 Silverlight 2 Visual Essentials

So far, you’ve seen how to size a Rectangle and an Ellipse, but what about
placing them exactly where you want them? Silverlight shapes use the
same layout system as any other element. However, some layout containers
aren’t as appropriate. For example, the StackPanel, DockPanel, and
WrapPanel often aren’t what you want because they’re designed to separate
elements. The Grid is a bit more flexible because it allows you to place as
many elements as you want in the same cell (although it doesn’t let you
position squares and ellipses in different parts of that cell). The ideal
container is the Canvas, which forces you to specify the coordinates of each
shape using the attached Left, Top, Right, or Bottom properties. This gives
you complete control over how shapes overlap:
<Canvas>
 <Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="100" Canvas.Top="50"
 Width="100" Height="50"></Ellipse>
 <Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40"
 Width="100" Height="50"></Rectangle>
</Canvas>

With a Canvas, the order of your tags is important. In the previous example,
the rectangle is superimposed on the ellipse because the ellipse appears
first in the list, and so is drawn first (see Figure 6-5). If this isn’t what you
want, you can rearrange the markup or use the Canvas.ZIndex attached
property to move an element to a specific layer.
Remember, a Canvas doesn’t need to occupy an entire page. For example,
there’s no reason that you can’t create a Grid that uses a Canvas in one of its
cells. This gives you the perfect way to lock down fixed bits of drawing
logic in a dynamic, free-flowing user interface.

 Silverlight 2 Visual Essentials 179

Figure 6-5. Overlapping shapes in a Canvas

Line
The Line shape represents a straight line that connects one point to another.
The starting and ending points are set by four properties: X1 and Y1 (for the
first point) and X2 and Y2 (for the second). For example, here’s a line that
stretches from (0, 0) to (10, 100):
<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>

The Fill property has no effect for a line. You must set the Stroke property.
The coordinates you use in a line are relative to the top-left corner where
the line is placed. For example, if you place the previous line in a
StackPanel, the coordinate (0, 0) points to wherever that item in the
StackPanel is placed. It might be the top-left corner of the page, but it
probably isn’t. If the StackPanel uses a nonzero Margin, or if the line is
preceded by other elements, the line will begin at a point (0, 0) some
distance down from the top of the page.

180 Silverlight 2 Visual Essentials

However, it’s perfectly reasonable to use negative coordinates for a line. In
fact, you can use coordinates that take your line out of its allocated space
and draw on top of any other part of the page. This isn’t possible with the
Rectangle and Ellipse shapes you’ve seen so far. However, there’s also a
drawback to this model—namely, lines can’t use the flow content model.
That means there’s no point setting properties such as Margin,
HorizontalAlignment, and VerticalAlignment on a line—they won’t have
any effect. The same limitation applies to the Polyline and Polygon shapes.

Note You can use the Height, Width, and Stretch properties with a
line, although it’s not terribly common. The basic technique is to use the
Height and Width to determine the space that’s allocated to the line, and
then use the Stretch property to resize the line to fill this area.

If you place a Line in a Canvas, the attached position properties (such as Top
and Left) still apply. They determine the starting position of the line. In
other words, the two line coordinates are offset by that amount. Consider
this line:
<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"
 Canvas.Left="5" Canvas.Top="100"></Line>

It stretches from (0, 0) to (10, 100), using a coordinate system that treats
the point (5, 100) on the Canvas as (0, 0). That makes it equivalent to this
line, which doesn’t use the Top and Left properties:
<Line Stroke="Blue" X1="5" Y1="100" X2="15" Y2="200"></Line>

It’s up to you whether you use the position properties when you place a
Line on a Canvas. Often you can simplify your line drawing by picking a
good starting point. You also make it easier to move parts of your drawing.
For example, if you draw several lines and other shapes at a specific
position in a Canvas, it’s a good idea to draw them relative to a nearby point

 Silverlight 2 Visual Essentials 181

(by using the same Top and Left coordinates). That way, you can shift that
entire part of your drawing to a new position as needed.

Note There’s no way to create a curved line with Line or Polyline
shapes. Instead, you need the more advanced Path class described later in
this chapter.

Polyline
The Polyline class allows you to draw a sequence of connected straight
lines. You simply supply a list of x and y coordinates using the Points
property. Technically, the Points property requires a PointCollection
object, but you fill this collection in XAML using a lean string-based
syntax. You simply need to supply a list of points and add a space or a
comma between each coordinate.
A Polyline can have as few as two points. For example, here’s a Polyline
that duplicates the first line you saw in this section, which stretches from
(5, 100) to (15, 200):
<Polyline Stroke="Blue" Points="5 100 15 200"></Polyline>

For better readability, use commas in between each x and y coordinate:
<Polyline Stroke="Blue" Points="5,100 15,200"></Polyline>

And here’s a more complex Polyline that begins at (10, 150). The points
move steadily to the right, oscillating between higher y values such as (50,
160) and lower ones such as (70, 130):
<Canvas>
 <Polyline Stroke="Blue" StrokeThickness="5" Points="10,150 30,140 50,160 70,130
90,170 110,120 130,180 150,110 170,190 190,100 210,240" >
 </Polyline>
</Canvas>

Figure 6-6 shows the final line.

182 Silverlight 2 Visual Essentials

Figure 6-6. A line with several segments

At this point, it might occur to you that it would be easier to fill the Points
collection programmatically, using some sort of loop that automatically
increments x and y values accordingly. This is true if you need to create
highly dynamic graphics—for example, a chart that varies its appearance
based on a set of data you extract from a database. But if you simply want
to build a fixed piece of graphical content, you won’t want to worry about
the specific coordinates of your shapes at all. Instead, you (or a designer)
will use another tool, such as Expression Design, to draw the appropriate
graphics, and then export them to XAML.

 Silverlight 2 Visual Essentials 183

Polygon
The Polygon is virtually the same as the Polyline. Like the Polyline class,
the Polygon class has a Points collection that takes a list of coordinates. The
only difference is that the Polygon adds a final line segment that connects
the final point to the starting point. (If your final point is already the same
as the first point, the Polygon class has no difference.) You can fill the
interior of this shape using the Fill brush. Figure 6-7 shows the previous
Polyline as a Polygon with a yellow fill.

Figure 6-7. A filled polygon

184 Silverlight 2 Visual Essentials

Note Technically, you can set the Fill property of a Polyline as well.
In this situation, the Polyline fills itself as though it were a Polygon—in
other words, as though it has an invisible line segment connecting the last
point to the first point. This effect is of limited use.

In a simple shape where the lines never cross, it’s easy to fill the interior.
However, sometimes you’ll have a more complex Polygon where it’s not
necessarily obvious what portions are “inside” the shape (and should be
filled) and what portions are outside.
For example, consider Figure 6-8, which features a line that crosses more
than one other line, leaving an irregular region at the center that you may or
may not want to fill. Obviously, you can control exactly what gets filled by
breaking this drawing down into smaller shapes. But you may not need to.

Figure 6-8. Determining fill areas when FillRule is EvenOdd

Crosses two lines
(an even number).

The region is not filled.

Crosses one line
(an odd number).

The region is filled.

 Silverlight 2 Visual Essentials 185

Every Polygon and Polyline includes a FillRule property that lets you
choose between two different approaches for filling in regions. By default,
FillRule is set to EvenOdd. In order to decide whether to fill a region,
Silverlight counts the number of lines that must be crossed to reach the
outside of the shape. If this number is odd, the region is filled in; if it’s
even, the region isn’t filled. In the center area of Figure 6-9, you must cross
two lines to get out of the shape, so it’s not filled.
Silverlight also supports the Nonzero fill rule, which is a little trickier.
Essentially, with Nonzero, Silverlight follows the same line-counting
process as EvenOdd, but it takes into account the direction that each line
flows. If the number of lines going in one direction (say, left to right) is
equal to the number going in the opposite direction (right to left), the
region is not filled. If the difference between these two counts is not zero,
the region is filled. In the shape from the previous example, the interior
region is filled if you set the FillRule to Nonzero. Figure 6-9 shows why. (In
this example, the points are numbered in the order they are drawn, and
arrows show the direction in which each line is drawn.)

186 Silverlight 2 Visual Essentials

Figure 6-9. Determining fill areas when FillRule is Nonzero

Crosses two left-to-right lines.
The count difference is not zero.

The region is filled.

2

4 5

1 3

Note If there are an odd number of lines, the difference between the
two counts can’t be zero. Thus, the Nonzero fill rule always fills at least as
much as the EvenOdd rule, plus possibly a bit more.

The tricky part about Nonzero is that its fill settings depend on how you
draw the shape, not what the shape itself looks like. For example, you
could draw the same shape in such a way that the center isn’t filled
(although it’s much more awkward, you’d begin by drawing the inner
region, and then draw the outside spikes in the reverse direction).

 Silverlight 2 Visual Essentials 187

Here’s the markup that draws the star shown in Figure 6-9:
<Polygon Stroke="Blue" StrokeThickness="1" Fill="Yellow"
 Canvas.Left="10" Canvas.Top="175" FillRule="Nonzero"
 Points="15,200 68,70 110,200 0,125 135,125">
</Polygon>

Line Caps and Line Joins
When drawing with the Line and Polyline shapes, you can choose how the
starting and ending edge of the line is drawn using the StartLineCap and
EndLineCap properties. (These properties have no effect on other shapes
because they’re closed.)
Ordinarily, both StartLineCap and EndLineCap are set to Flat, which means
the line ends immediately at its final coordinate. Your other choices are
Round (which rounds the corner off gently), Triangle (which draws the two
sides of the line together in a point), and Square (which ends the line with a
sharp edge). All of these values add length to the line—in other words, they
take it beyond the position where it would otherwise end. The extra
distance is half the thickness of the line.

Note The only difference between Flat and Square is the fact that the
Square-edged line extends this extra distance. In all other respects, the
edge looks the same.

Figure 6-10 shows different line caps at the end of a line.

188 Silverlight 2 Visual Essentials

Figure 6-10. Line caps

All shapes except Line allow you to tweak how their corners are shaped
using the StrokeLineJoin property. You have three choices. The default
value, Miter, uses sharp edges, while Bevel cuts off the point edge, and
Round rounds it out gently. Figure 6-11 shows the difference.

 Silverlight 2 Visual Essentials 189

Figure 6-11. Line joins

When using mitered edges with thick lines and very small angles, the sharp
corner can extend an impractically long distance. In this case, you can use
Bevel or Round to pare down the corner. Or you could use the
StrokeMiterLimit, which automatically bevels the edge when it reaches a
certain maximum length. The StrokeMiterLimit is a ratio that compares the
length used to miter the corner to half the thickness of the line. If you set

190 Silverlight 2 Visual Essentials

this to 1 (which is the default value), you’re allowing the corner to extend
half the thickness of the line. If you set it to 3, you’re allowing the corner to
extend to 1.5 times the thickness of the line. The last line in Figure 6-11
uses a higher miter limit with a narrow corner.

Dashes
Instead of drawing boring solid lines for the borders of your shape, you can
draw dashed lines—lines that are broken with spaces according to a pattern
you specify.
When creating a dashed line in Silverlight, you aren’t limited to specific
presets. Instead, you choose the length of the solid segment of the line and
the length of the broken (blank) segment by setting the StrokeDashArray
property. For example, consider this line:
<Polyline Stroke="Blue" StrokeThickness="14" StrokeDashArray="1 2"
 Points="10,30 60,0 90,40 120,10 350,10">
</Polyline>

It has a line value of 1 and a gap value of 2. These values are interpreted
relative to the thickness of the line. So if the line is 14 pixels thick (as in
this example), the solid portion is 14 pixels, followed by a blank portion of
28 pixels. The line repeats this pattern for its entire length.
On the other hand, if you swap these values around like so:
StrokeDashArray="2 1"

you get a line that has 28-pixel solid portions broken by 7-pixel spaces.
Figure 6-12 shows both lines. As you’ll notice, when a very thick line
segment falls on a corner, it may be broken unevenly.

 Silverlight 2 Visual Essentials 191

Figure 6-12. Dashed lines

There’s no reason that you need to stick with whole number values. For
example, this StrokeDashArray is perfectly reasonable:
StrokeDashArray="5 0.2 3 0.2"

It supplies a more complex sequence—a dashed line that’s 5×14 length,
then a 0.2×15 break, followed by a 3×14 length and another 0.2×14 length.
At the end of this sequence, the line repeats the pattern from the beginning.
An interesting thing happens if you supply an odd number of values for the
StrokeDashArray. Take this one for example:

192 Silverlight 2 Visual Essentials

StrokeDashArray="3 0.5 2"

When drawing this line, Silverlight begins with a 3-times-thickness line,
followed by a 0.5-times-thickness space, followed by a 2-times-thickness
line. But when it repeats the pattern, it starts with a gap, meaning you get a
3-times-thickness space, followed by a 0.5-times-thickness line, and so on.
Essentially, the dashed line alternates its pattern between line segments and
spaces.
If you want to start midway into your pattern, you can use the
StrokeDashOffset property, which is a 0-based index number that points to
one of the values in your StrokeDashArray. For example, if you set
StrokeDashOffset to 1 in the previous example, the line will begin with the
0.5-thickness space. Set it to 2, and the line begins with the 2-thickness
segment.
Finally, you can control how the broken edges of your line are capped.
Ordinarily, it’s a straight edge, but you can set the StrokeDashCap to the
Bevel, Square, and Triangle values you considered in the previous section.
Remember, all of these settings add one half the line thickness to the end of
your dash. If you don’t take this into account, you might end up with
dashes that overlap one another. The solution is to add extra space to
compensate.

Tip When using the StrokeDashCap property with a line (not a
shape), it’s often a good idea to set the StartLineCap and EndLineCap to the
same values. This makes the line look consistent.

 Silverlight 2 Visual Essentials 193

Paths and Geometries
Earlier in this chapter, you took a look at a number of classes that derive
from Shape, including Rectangle, Ellipse, Polygon, and Polyline. However,
there’s one Shape-derived class that you haven’t considered yet, and it’s the
most powerful by far. The Path class has the ability to encompass any
simple shape, groups of shapes, and more complex ingredients such as
curves.
The Path class includes a single property, named Data, that accepts a
Geometry object that defines the shape (or shapes) the path includes. You
can’t create a Geometry object directly because it’s an abstract class. Instead,
you need to use one of the derived classes listed in Table 6-3.

Table 6-3. Geometry Classes

NAME DESCRIPTION

LineGeometry Represents a straight line. The geometry equivalent
of the Line shape.

RectangleGeometry
Represents a rectangle (optionally with rounded
corners). The geometry equivalent of the Rectangle
shape.

EllipseGeometry Represents an ellipse. The geometry equivalent of
the Ellipse shape.

GeometryGroup
Adds any number of Geometry objects to a single
path, using the EvenOdd or Nonzero fill rule to
determine what regions to fill.

PathGeometry
Represents a more complex figure that’s composed
of arcs, curves, and lines, and can be open or
closed.

194 Silverlight 2 Visual Essentials

Note Silverlight does not include all the geometry classes that WPF
supports. Notably absent is the CombinedGeometry class, which allows to
geometries to be fused together (although the effect can be duplicated with
the more powerful PathGeometry class). Also missing is StreamGeometry,
which provides a lightweight read-only equivalent to PathGeometry.

At this point, you might be wondering what the difference is between a
path and a geometry. The geometry defines a shape. A path allows you to
draw the shape. Thus, the Geometry object defines details such as the
coordinates and size of your shape, while the Path object supplies the
Stroke and Fill brushes you’ll use to paint it. The Path class also includes
the features it inherits from the UIElement infrastructure, such as mouse and
keyboard handling.
In the following sections, you’ll explore all the classes that derive from
Geometry.

Line, Rectangle, and Ellipse Geometries
The LineGeometry, RectangleGeometry, and EllipseGeometry classes map
directly to the Line, Rectangle, and Ellipse shapes that you learned about in
the first half of this chapter. For example, you can convert this markup that
uses the Rectangle element:
<Rectangle Fill="Yellow" Stroke="Blue"
 Width="100" Height="50" ></Rectangle>

to this markup that uses the Path element:
<Path Fill="Yellow" Stroke="Blue">
 <Path.Data>
 <RectangleGeometry Rect="0,0 100,50"></RectangleGeometry>
 </Path.Data>
</Path>

 Silverlight 2 Visual Essentials 195

The only real difference is that the Rectangle shape takes Height and Width
values, while the RectangleGeometry takes four numbers that describe the
size and location of the rectangle. The first two numbers describe the x and
y coordinates where the top-left corner will be placed, while the last two
numbers set the width and height of the rectangle. You can start the
rectangle out at (0, 0) to get the same effect as an ordinary Rectangle
element, or you can offset the rectangle using different values. The
RectangleGeometry class also includes the RadiusX and RadiusY properties
that let you round the corners (as described earlier).
Similarly, you can convert the following Line:
<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>

to this LineGeometry:
<Path Fill="Yellow" Stroke="Blue">
 <Path.Data>
 <LineGeometry StartPoint="0,0" EndPoint="10,100"></LineGeometry>
 </Path.Data>
</Path>

and you can convert an Ellipse like this:
<Ellipse Fill="Yellow" Stroke="Blue"
 Width="100" Height="50" HorizontalAlignment="Left"></Ellipse>

to this EllipseGeometry:
<Path Fill="Yellow" Stroke="Blue">
 <Path.Data>
 <EllipseGeometry RadiusX="50" RadiusY="25" Center="50,25"></EllipseGeometry>
 </Path.Data>
</Path>

Notice that the two radius values are simply half of the width and height
values. You can also use the Center property to offset the location of the
ellipse. In this example, the center is placed in the exact middle of the
ellipse bounding box, so that it’s drawn in exactly the same way as the
Ellipse shape.

196 Silverlight 2 Visual Essentials

Overall, these simple geometries work in exactly the same way as the
corresponding shapes. You get the added ability to offset rectangles and
ellipses, but that’s not necessary if you’re placing your shapes on a Canvas,
which already gives you the ability to position your shapes at a specific
location. In fact, if this were all you could do with geometries, you
probably wouldn’t bother to use the Path element. The difference appears
when you decide to group more than one geometry in the same path and
when you step up to more complex curves, as described in the following
sections.

Combining Shapes with GeometryGroup
The simplest way to combine geometries is to use the GeometryGroup and
nest the other Geometry-derived objects inside. Here’s an example that
places an ellipse next to a square:
<Path Fill="Yellow" Stroke="Blue" Margin="5" Canvas.Top="10" Canvas.Left="10" >
 <Path.Data>
 <GeometryGroup>
 <RectangleGeometry Rect="0,0 100,100"></RectangleGeometry>
 <EllipseGeometry Center="150,50" RadiusX="35" RadiusY="25"></EllipseGeometry>
 </GeometryGroup>
 </Path.Data>
</Path>

The effect of this markup is the same as if you supplied two Path elements,
one with the RectangleGeometry and one with the EllipseGeometry (and
that’s the same as if you used a Rectangle and Ellipse shape instead).
However, there’s one advantage to this approach. You’ve replaced two
elements with one, which means you’ve reduced the overhead of your user
interface. In general, a page that uses a smaller number of elements with
more complex geometries will perform faster than a page that has a large
number of elements with simpler geometries. This effect won’t be apparent
in a page that has just a few dozen shapes, but it may become significant in
one that requires hundreds or thousands.

 Silverlight 2 Visual Essentials 197

Of course, there’s also a drawback to combining geometries in a single
Path element—namely, you won’t be able to perform event handling of the
different shapes separately. Instead, the Path element will fire all mouse
events. However, you can still manipulate the nested RectangleGeometry and
EllipseGeometry objects independently to change the overall path. For
example, each geometry provides a Transform property that you can set to
stretch, skew, or rotate that part of the path.
Another advantage of geometries is that you can reuse the same geometry
in several separate Path elements. No code is necessary—you simply need
to define the geometry in a Resources collection and refer to it in your path
with the StaticExtension markup extensions. Here’s an example that
rewrites the markup shown previously to show instances of the
CombinedGeometry, at two different locations on a Canvas and with two
different fill colors:
<UserControl.Resources>
 <GeometryGroup x:Key="Geometry">
 <RectangleGeometry Rect="0 ,0 100 ,100"></RectangleGeometry>
 <EllipseGeometry Center="150, 50" RadiusX="35" RadiusY="25"></EllipseGeometry>
 </GeometryGroup>
</UserControl.Resources>

<Canvas>
 <Path Fill="Yellow" Stroke="Blue" Margin="5" Canvas.Top="10" Canvas.Left="10"
 Data="{StaticResource Geometry}">
 </Path>
 <Path Fill="Green" Stroke="Blue" Margin="5" Canvas.Top="150" Canvas.Left="10"
 Data="{StaticResource Geometry}">
 </Path>
</Canvas>

The GeometryGroup becomes more interesting when your shapes intersect.
Rather than simply treating your drawing as a combination of solid shapes,
the GeometryGroup uses its FillRule property (which can be EvenOdd or
Nonzero, as described earlier) to decide what shapes to fill. Consider what

198 Silverlight 2 Visual Essentials

happens if you alter the markup shown earlier like this, placing the ellipse
over the square:
<Path Fill="Yellow" Stroke="Blue" Margin="5" Canvas.Top="10" Canvas.Left="10" >
 <Path.Data>
 <GeometryGroup>
 <RectangleGeometry Rect="0,0 100,100"></RectangleGeometry>
 <EllipseGeometry Center="50,50" RadiusX="35" RadiusY="25"></EllipseGeometry>
 </GeometryGroup>
 </Path.Data>
</Path>

Now this markup creates a square with an ellipse-shaped hole in it. If you
change FillRule to Nonzero, you’ll get a solid ellipse over a solid rectangle,
both with the same yellow fill.
You could create the square-with-a-hole effect by simply superimposing a
white-filled ellipse over your square. However, the GeometryGroup class
becomes more useful if you have content underneath, which is typical in a
complex drawing. Because the ellipse is treated as a hole in your shape (not
another shape with a different fill), any content underneath shows through.
For example, if you add this line of text:
<TextBlock Canvas.Top="50" Canvas.Left="20" FontSize="25" FontWeight="Bold">
 Hello There</TextBlock>

Curves and Lines with PathGeometry
PathGeometry is the superpower of geometries. It can draw anything that the
other geometries can, and much more. The only drawback is a lengthier
(and somewhat more complex) syntax.
Every PathGeometry object is built out of one or more PathFigure objects
(which are stored in the PathGeometry.Figures collection). Each PathFigure
is a continuous set of connected lines and curves that can be closed or
open. The figure is closed if the end of the last line in the figure connects to
the beginning of the first line.
The PathFigure class has four key properties, as described in Table 6-4.

 Silverlight 2 Visual Essentials 199

Table 6-4. PathFigure Properties

NAME DESCRIPTION

StartPoint This is a Point that indicates where the line for the figure
begins.

Segments This is a collection of PathSegment objects that are used
to draw the figure.

IsClosed If true, Silverlight adds a straight line to connect the
starting and ending points (if they aren’t the same).

IsFilled If true, the area inside the figure is filled in using the
Path.Fill brush.

So far, this all sounds fairly straightforward. The PathFigure is a shape
that’s drawn using an unbroken line that consists of a number of segments.
However, the trick is that there are several type of segments, all of which
derive from the PathSegment class. Some are simple, like the LineSegment,
which draws a straight line. Others, like the BezierSegment, draw curves and
are correspondingly more complex.
You can mix and match different segments freely to build your figure.
Table 6-5 lists the segment classes you can use.

Table 6-5. PathSegment Classes

NAME DESCRIPTION

LineSegment Creates a straight line between two points.

ArcSegment Creates an elliptical arc between two
points.

BezierSegment Creates a Bézier curve between two points.

QuadraticBezierSegment
Creates a simpler form of Bézier curve that
has one control point instead of two, and is
faster to calculate.

200 Silverlight 2 Visual Essentials

Table 6-5. continued

NAME DESCRIPTION

PolyLineSegment

Creates a series of straight lines. You can
get the same effect using multiple
LineSegment objects, but a single
PolyLineSegment is more concise.

PolyBezierSegment Creates a series of Bézier curves.

PolyQuadraticBezierSegment Creates a series of simpler quadratic Bézier
curves.

Straight Lines

It’s easy enough to create simple lines using the LineSegment and
PathGeometry classes. You simply set the StartPoint and add one
LineSegment for each section of the line. The LineSegment.Point property
identifies the end point of each segment.
For example, the following markup begins at (10, 100), draws a straight
line to (100, 100), and then draws a line from that point to (100, 50).
Because the PathFigure.IsClosed property is set to true, a final line segment
connects (100, 50) to (0, 0). The final result is a right-angled triangle.
<Path Stroke="Blue">
 <Path.Data>
 <PathGeometry>
 <PathFigure IsClosed="True" StartPoint="10,100">
 <LineSegment Point="100,100" />
 <LineSegment Point="100,50" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

 Silverlight 2 Visual Essentials 201

Note Remember, each PathGeometry can contain an unlimited number
of PathFigure objects. That means you can create several separate open or
closed figures that are all considered part of the same path.

Arcs

Arcs are a little more interesting than straight lines. You identify the end
point of the line using the ArcSegment.Point property, just as you would
with a LineSegment. However, the PathFigure draws a curved line from the
starting point (or the end point of the previous segment) to the end point of
your arc. This curved connecting line is actually a portion of the edge of an
ellipse.
Obviously, the end point isn’t enough information to draw the arc because
there are many curves (some gentle, some more extreme) that could
connect two points. You also need to indicate the size of the imaginary
ellipse that’s being used to draw the arc. You do this using the
ArcSegment.Size property, which supplies the x radius and the y radius of
the ellipse. The larger the ellipse size of the imaginary ellipse, the more
gradually its edge curves.

Note For any two points, there is a practical maximum and minimum
size for the ellipse. The maximum occurs when you create an ellipse so
large the line segment you’re drawing appears straight. Increasing the size
beyond this point has no effect. The minimum occurs when the ellipse is
small enough that a full semicircle connects the two points. Shrinking the
size beyond this point also has no effect.

Here’s an example that creates the gentle arc shown in Figure 6-13:

202 Silverlight 2 Visual Essentials

<Path Stroke="Blue" StrokeThickness="3">
 <Path.Data>
 <PathGeometry>
 <PathFigure IsClosed="False" StartPoint="10,100" >
 <ArcSegment Point="250,150" Size="200,300" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

Figure 6-13. A simple arc

So far, arcs sound fairly straightforward. However, it turns out that even
with the start and end point and the size of the ellipse, you still don’t have
all the information you need to draw your arc unambiguously. In the
previous example, you’re relying on two default values that may not be set
to your liking.

 Silverlight 2 Visual Essentials 203

To understand the problem, you need to consider the other ways that an arc
can connect the same two points. If you picture two points on an ellipse,
it’s clear that you can connect them in two ways—by going around the
short side or by going around the long side. Figure 6-14 illustrates.

Figure 6-14. Two ways to trace a curve along an ellipse

End Point

Large Arc

Small Arc

Start Point

You set the direction using the ArcSegment.IsLargeArc property, which can
be true or false. The default value is false, which means you get the shorter
of the two arcs.
Even once you’ve set the direction, there is still one point of ambiguity—
where the ellipse is placed. For example, imagine you draw an arc that
connects a point on the left with a point on the right, using the shortest
possible arc. The curve that connects these two points could be stretched
down and then up (as it does in Figure 6-13), or it could be flipped so that it
curves up and then down. The arc you get depends on the order in which
you define the two points in the arc and the ArcSegment.SweepDirection
property, which can be Counterclockwise (the default) or Clockwise. Figure
6-15 shows the difference.

204 Silverlight 2 Visual Essentials

Figure 6-15. Two ways to flip a curve

Clockwise

Counterclockwise

End PointStart Point

Bézier Curves

Bézier curves connect two line segments using a complex mathematical
formula that incorporates two control points that determine how the curve
is shaped. Bézier curves are an ingredient in virtually every vector drawing
application ever created because they’re remarkably flexible. Using
nothing more than start point, end point, and two control points, you can
create a surprisingly wide variety of smooth curves (including loops).
Figure 6-16 shows a classic Bézier curve. Two small circles indicate the
control points, and a dashed line connects each control point to the end of
the line it affects the most.

 Silverlight 2 Visual Essentials 205

Figure 6-16. A Bézier curve

Even without understanding the math underpinnings, it’s fairly easy to get
the “feel” of how Bézier curves work. Essentially, the two control points do
all the magic. They influence the curve in two ways:
 At the starting point, a Bézier curve runs parallel with the line that connects it

to the first control point. At the ending point, the curve runs parallel with the
line that connects it to the end point. (In between, it curves.)

 The degree of curvature is determined by the distance to the two control
points. If one control point is farther away, it exerts a stronger “pull.”

To define a Bézier curve in markup, you supply three points. The first two
points (BezierSegment.Point1 and BezierSegment.Point2) are the control
points. The third point (BezierSegment.Point3) is the end point of the curve.

206 Silverlight 2 Visual Essentials

As always, the starting point is that starting point of the path or wherever
the previous segment leaves off.
The example shown in Figure 6-16 includes three separate components,
each of which uses a different stroke and thus requires a separate Path
element. The first path creates the curve, the second adds the dashed lines,
and the third applies the circles that indicate the control points. Here’s the
complete markup:
<Canvas>
 <Path Stroke="Blue" StrokeThickness="5" Canvas.Top="20">
 <Path.Data>
 <PathGeometry>
 <PathFigure StartPoint="10,10">
 <BezierSegment Point1="130,30" Point2="40,140"
 Point3="150,150"></BezierSegment>
 </PathFigure>
 </PathGeometry>
 </Path.Data>
 </Path>
 <Path Stroke="Green" StrokeThickness="2" StrokeDashArray="5 2" Canvas.Top="20">
 <Path.Data>
 <GeometryGroup>
 <LineGeometry StartPoint="10,10" EndPoint="130,30"></LineGeometry>
 <LineGeometry StartPoint="40,140" EndPoint="150,150"></LineGeometry>
 </GeometryGroup>
 </Path.Data>
 </Path>
 <Path Fill="Red" Stroke="Red" StrokeThickness="8" Canvas.Top="20">
 <Path.Data>
 <GeometryGroup>
 <EllipseGeometry Center="130,30"></EllipseGeometry>
 <EllipseGeometry Center="40,140"></EllipseGeometry>
 </GeometryGroup>
 </Path.Data>
 </Path>
</Canvas>

 Silverlight 2 Visual Essentials 207

Trying to code Bézier paths is a recipe for many thankless hours of trial-
and-error computer coding. You’re much more likely to draw your curves
(and many other graphical elements) in a dedicated drawing program that
has an export-to-XAML feature or Microsoft Expression Blend.

Tip To learn more about the algorithm that underlies the Bézier
curve, you can read an informative Wikipedia article on the subject at
http://en.wikipedia.org/wiki/Bezier_curve.

The Geometry Mini-Language
The geometries you’ve seen so far have been relatively concise, with only a
few points. More complex geometries are conceptually the same but can
easily require hundreds of segments. Defining each line, arc, and curve in a
complex path is extremely verbose and unnecessary—after all, it’s likely
that complex paths will be generated by a design tool rather than written by
hand, so the clarity of the markup isn’t all that important. With this in
mind, the creators of Silverlight added a more concise alternate syntax for
defining geometries that allows you to represent detailed figures with much
smaller amounts of markup. This syntax is often described as the geometry
mini-language (and sometimes the path mini-language due to its
application with the Path element).
To understand the mini-language, you need to realize that it is essentially a
long string holding a series of commands. These commands are read by a
type converter that then creates the corresponding geometry. Each
command is a single letter and is optionally followed by a few bits of
numeric information (such as x and y coordinates) separated by spaces.
Each command is also separated from the previous command with a space.
For example, a bit earlier you created a basic triangle using a closed path
with two line segments. Here’s the markup that did the trick:

http://en.wikipedia.org/wiki/Bezier_curve

208 Silverlight 2 Visual Essentials

<Path Stroke="Blue">
 <Path.Data>
 <PathGeometry>
 <PathFigure IsClosed="True" StartPoint="10,100">
 <LineSegment Point="100,100" />
 <LineSegment Point="100,50" />
 </PathFigure>
 </PathGeometry>
 </Path.Data>
</Path>

To duplicate this figure using the mini-language, you’d write this:
 <Path Stroke="Blue" Data="M 10,100 L 100,100 L 100,50 Z"/>

This path uses a sequence of four commands. The first command (M)
creates the PathFigure and sets the starting point to (10, 100). The
following two commands (L) create line segments. The final command (Z)
ends the PathFigure and sets the IsClosed property to true. The commas in
this string are optional, as are the spaces between the command and its
parameters, but you must leave at least one space between adjacent
parameters and commands. That means you can reduce the syntax even
further to this less-readable form:
 <Path Stroke="Blue" Data="M10 100 L100 100 L100 50 Z"/>

The geometry mini-language is easy to grasp. It uses a fairly small set of
commands, which are detailed in Table 6-6. Parameters are shown in
italics.

 Silverlight 2 Visual Essentials 209

Table 6-6. Commands for the Geometry Mini-Language

COMMAND DESCRIPTION

F value

Sets the Geometry.FillRule property. Use 0
for EvenOdd or 1 for Nonzero. This command
must appear at the beginning of the string (if
you decide to use it).

M x,y

Creates a new PathFigure for the geometry
and sets its start point. This command must
be used before any other commands except
F. However, you can also use it during your
drawing sequence to move the origin of your
coordinate system. (The M stands for move.)

L x,y Creates a LineSegment to the specified point.

H x
Creates a horizontal LineSegment using the
specified x value and keeping the y value
constant.

V y
Creates a vertical LineSegment using the
specified y value and keeping the x value
constant.

A radiusX, radiusY degrees
isLargeArc, isClockwise
x,y

Creates an ArcSegment to the indicated point.
You specify the radii of the ellipse that
describes the arc, the number of degrees the
arc is rotated, and Boolean flags that set the
IsLargeArc and SweepDirection properties
described earlier.

C x1,y1 x2,y2 x,y
Creates a BezierSegment to the indicated
point, using control points at (x1, y1) and
(x2, y2).

210 Silverlight 2 Visual Essentials

Table 6-6. continued

COMMAND DESCRIPTION

Q x1, y1 x,y
Creates a QuadraticBezierSegment to the
indicated point, with one control point at (x1,
y1).

S x2,y2 x,y

Creates a smooth BezierSegment by using
the second control point from the previous
BezierSegment as the first control point in
the new BezierSegment.

Z

Ends the current PathFigure and sets
IsClosed to true. You don’t need to use this
command if you don’t want to set IsClosed
to true —instead, simply use M if you want to
start a new PathFigure or end the string.

Tip There’s one more trick in the geometry mini-language: you can
use a command in lowercase if you want its parameters to be evaluated
relative to the previous point rather than using absolute coordinates.

Clipping with Geometry
As you’ve seen, geometries are the most powerful way to create a shape.
However, geometries aren’t limited to the Path element. They’re also used
anywhere you need to supply the abstract definition of a shape (rather than
draw a real, concrete shape in a page).
Another place geometries are used is to set the Clip property, which is
provided by all elements. The Clip property allows you to constrain the
outer bounds of an element to fit a specific geometry. You can use the Clip
property to create a number of exotic effects. Although it’s commonly used

 Silverlight 2 Visual Essentials 211

to trim down image content in an Image element, you can use the Clip
property with any element. The only limitation is that you’ll need a closed
geometry if you actually want to see anything—individual curves and line
segments aren’t of much use.

Exporting Clip Art
In most cases, you won’t create Silverlight art by hand. Instead, you (or a
designer) will use a design tool to create vector art, and then export it to
XAML. The exported XAML document you’ll end up with is essentially a
Canvas that contains a combination of shape elements. You can place that
Canvas inside an existing Canvas to show your artwork.
Although many drawing programs don’t have built-in support for XAML
export, there are still many options for getting the graphics you need. The
following sections outline the options you can use to get vector art out of
virtually any application.

Expression Design
Expression Design, Microsoft’s illustration and graphic design program,
has a built-in XAML export. It can import a variety of vector art file
formats, including Adobe Illustrator (.ai) files, and it can export to XAML.
When exporting to XAML, follow these steps:

1. Choose File Export from the menu.
2. In the Save As Type list of the Export dialog box, choose XAML. Then,

enter a file name and click Save. The Export XAML window will appear
(see Figure 6-17), which shows you the image you are exporting and a
preview of the XAML content it will create (click the XAML tab to see
it).

212 Silverlight 2 Visual Essentials

Figure 6-17. Creating a Silverlight-compatible XAML file

3. In the Document format group of settings, click Silverlight to ensure
you’re creating a Silverlight-compatible XAML file. This ensures that
XAML features that are supported in WPF but not in Silverlight won’t be
used.

4. Click Export to save the file.

 Silverlight 2 Visual Essentials 213

Note Usually, the standard XAML export option (Canvas) will work with
Silverlight applications, with minimal changes, such as manually removing a
few unsupported attributes. However, the Resource Dictionary export option
will create XAML files that won’t work with Silverlight. That’s because this
option stores the graphic in a collection of DrawingBrush resources instead of
a Canvas. This makes it easier to efficiently reuse the drawing in WPF, but
it’s useless in Silverlight, because Silverlight doesn’t include the Drawing or
DrawingBrush classes.

The generated XAML file includes a root-level Canvas element. Inside the
Canvas, you’ll find dozens of Path elements, each positioned at a specific
place in the Canvas, and with its own data and brushes. You can cut and
paste this entire block of markup into any Silverlight page to reproduce the
graphic. However, it’s more common for an application to have a variety of
graphical resources, and it’s often inconvenient to embed them all into your
markup. A better idea is to store each drawing as an application resource in
the root App.xaml file, and then draw on these resources to build your
interface.

Conversion
Microsoft Expression Design is one example of a design tool that supports
XAML natively. However, plug-ins and conversion tools are available for
many other popular formats. Mike Swanson, a Microsoft evangelist,
maintains a page at http://blogs.msdn.com/mswanson/articles/
WPFToolsAndControls.aspx with links to many free converters, including
 An Adobe Illustrator (.ai) to XAML converter
 A Flash (.swf) to XAML converter
 A Visio plug-in for exporting XAML

http://blogs.msdn.com/mswanson/articles

214 Silverlight 2 Visual Essentials

You can also find more non-free XAML conversion tools on the Web.
These tools won’t necessarily create XAML content that is completely
compatible with Silverlight. However, in most cases it will take only minor
edits to fix markup errors.

Save or Print to XPS
The XML Paper Specification (XPS) is a Microsoft standard for creating
fixed, print-ready documents. It’s similar to the Adobe PDF standard, and
support is included in Office 2007 and Windows Vista. However, the XPS
standard is based on XAML, which makes it possible to transfer content
from an XPS document to a Silverlight page. If you’re using Windows
Vista, this gives you a backdoor to get graphic output from virtually any
application.
For example, Figure 6-18 shows a document in Word 2007 after
performing a clip-art search and dragging a vector image (a stack of
money) onto the page. The easiest way to save this graphic as an XPS
document is to use the free Save As PDF or XPS add-in that Microsoft
provides at http://tinyurl.com/y69y7g. Then, you can save the document
simply by choosing File Save As PDF or XPS. If you’re using
Windows Vista, you have another option that works with other non-Office
programs. You can choose to print your document to the Microsoft XPS
Document Writer print device.

http://tinyurl.com/y69y7g
http://tinyurl.com/y69y7g

 Silverlight 2 Visual Essentials 215

Figure 6-18. Exporting pictures to XAML through XPS

216 Silverlight 2 Visual Essentials

Either way, you’ll end up with a file that has the extension .xps. This file is
actually a ZIP archive (somewhat like the XAP files that Silverlight uses).
To extract the XAML inside, you need to begin by renaming the extension
to .zip and opening the archive to view the files inside. Bitmaps will be
included as separate files in the Resources folder. Vector art, like the money
stack shown in Figure 6-18, will be defined in XAML inside a page in the
Documents\1\Pages folder. There, you’ll find a file for each page in your
document, with file names in the format [PageNumber].fpage. For example,
in the XPS file that’s generated for the previous example, you’ll find a
single 1.fpage file that defines the page with the money graphic.
If you extract that file and open it in a text editor, you’ll see that it’s
completely legitimate XAML. The root element is named FixedPage, which
is not recognized in Silverlight, but inside that is an ordinary Canvas that
you can cut and paste into a Silverlight window. For the example shown in
Figure 6-18, you’ll find that the Canvas holds a series of Path elements that
define the different parts of the shape.
When you paste the markup into a Silverlight page, you’ll find you may
need to make minor changes. For example, you’ll need to remove the
unsupported BidiLevel attribute, which the Silverlight parser flags as an
error. Furthermore, you’ll probably want to change the position coordinates
and remove the scale transform that’s applied to the root Canvas. This
allows you to free the image from the full printed page, so it can fit your
Silverlight page perfectly. Figure 6-19 shows the final result.

 Silverlight 2 Visual Essentials 217

Figure 6-19. Content from an XPS in Silverlight

218 Silverlight 2 Visual Essentials

The Last Word
In this chapter, you took a detailed look at Silverlight’s support for basic
2D drawing. You began by considering the simple shape classes and
continued the Path, the most sophisticated of the shape classes, which lets
you add arcs and curves.
However, your journey is complete. In the next chapter, you’ll consider
how you can create better drawings by using the right brushes, controlling
opacity, and applying with transforms.

 Silverlight 2 Visual Essentials 219

Chapter 7: Brushes and Transforms
In the previous chapter, you considered how you can use Shape-derived
classes like the Rectangle, Ellipse, Polygon, Polyline, and Path to create a
variety of different drawings into Silverlight’s 2-D drawing model.
However, shapes alone fall short of what you need to create detailed 2D
vector art for a graphically rich application. There are more exotic
Silverlight brushes that allow you to create gradients, tiled patterns, and
bitmap fills in any shape. Silverlight’s effortless support for transparency
allows you to blend multiple images and elements together. Transforms are
specialized objects that can change the visual appearance of any element by
scaling, rotating, or skewing it. When you combine these features—for
example, tossing together a dash of transparency with the warping effect of
a transform—you can create popular effects, like reflections, glows, and
shadows.

Brushes
As you know, brushes fill an area, whether it’s the background, foreground,
or border of an element, or the fill or stroke of a shape. For elements, you
use brushes with the Foreground, Background, and BorderBrush properties.
For shapes, you use the Fill and Stroke properties.
You’ve used brushes throughout this book, but so far you’ve done most of
your work with the straightforward SolidColorBrush. Although
SolidColorBrush is indisputably useful, several other classes that inherit
from System.Windows.Media.Brush can give you more exotic effects. Table
7-1 lists them all.

220 Silverlight 2 Visual Essentials

Table 7-1. Brush Classes

NAME DESCRIPTION

SolidColorBrush Paints an area using a solid single-color fill.

LinearGradientBrush

Paints an area using a gradient fill, a gradually
shaded fill that changes from one color to
another (and, optionally, to another and then
another, and so on).

RadialGradientBrush

Paints an area using a radial gradient fill, which
is similar to a linear gradient except it radiates
out in a circular pattern starting from a center
point.

ImageBrush Paints an area using an image that can be
stretched, scaled, or tiled.

VideoBrush
Paints an area using a MediaElement (which
gets its content from a video file). This allows
you to play video in any shape or element.

Transparency
The shapes you’ve seen have been completely opaque. However,
Silverlight supports true transparency. That means if you layer several
elements on top of one another and give them all varying layers of
transparency, you’ll see exactly what you expect. At its simplest, this
feature gives you the ability to create graphical backgrounds that “show
through” the elements you place on top. At its most complex, this feature
allows you to create multilayered animations and other effects.
There are several ways to make an element partly transparent:

 Silverlight 2 Visual Essentials 221

 Set the Opacity property: Opacity is a fractional value from 0 to 1, where 1
is completely solid (the default) and 0 is completely transparent. The Opacity
property is defined in the UIElement class, so it applies to all elements.

 Use a semitransparent color: Any color that has an alpha value less than
255 is semitransparent. You can use a semitransparent color when setting the
foreground, background, or border of an element.

 Set the OpacityMask property: This allows you to make specific regions of
an element transparent or partially transparent. For example, you can use it to
fade a shape gradually into transparency.

Making the Silverlight Control Transparent
So far, you’ve seen how to make different elements in a Silverlight region
transparent. But there’s one more transparency trick you can use—making
the background of the Silverlight content region completely transparent.
The most common reason to use this technique is because you want
nonrectangular Silverlight content to blend in seamlessly with the web page
background underneath. However, you might also give the Silverlight
control a transparent background in order to put HTML elements and
Silverlight elements side by side, which is particularly useful if these
elements interact.

Transforms
A great deal of drawing tasks can be made simpler with the use of a
transform—an object that alters the way a shape or element is drawn by
secretly shifting the coordinate system it uses. In Silverlight, transforms are
represented by classes that derive from the abstract
System.Windows.Media.Transform class, as listed in Table 7-3.

222 Silverlight 2 Visual Essentials

Table 7-3. Transform Classes

NAME DESCRIPTION IMPORTANT
PROPERTIES

TranslateTransform Displaces your coordinate system
by some amount. This transform is
useful if you want to draw the
same shape in different places.

X, Y

RotateTransform Rotates your coordinate system.
The shapes you draw normally are
turned around a center point you
choose.

Angle, CenterX,
CenterY

ScaleTransform Scales your coordinate system up
or down, so that your shapes are
drawn smaller or larger. You can
apply different degrees of scaling
in the x and y dimensions, thereby
stretching or compressing your
shape. When a shape is resized,
Silverlight resizes its inside area
and its border proportionately.
That means the larger your shape
grows, the thicker its border will
be.

ScaleX, ScaleY,
CenterX,
CenterY

SkewTransform Warps your coordinate system by
slanting it a number of degrees.
For example, if you draw a square,
it becomes a parallelogram.

AngleX, AngleY,
CenterX,
CenterY

 Silverlight 2 Visual Essentials 223

NAME DESCRIPTION IMPORTANT
PROPERTIES

MatrixTransform Modifies your coordinate system
using matrix multiplication with
the matrix you supply. This is the
most complex option—it requires
some mathematical skill.

Matrix

TransformGroup Combines multiple transforms so
they can all be applied at once.
The order in which you apply
transformations is important—it
affects the final result. For
example, rotating a shape (with
RotateTransform) and then
moving it (with
TranslateTransform) sends the
shape off in a different direction
than if you move it and then
rotate it.

N/A

Technically, all transforms use matrix math to alter the coordinates of your
shape. However, using the prebuilt transforms such as TranslateTransform,
RotateTransform, ScaleTransform, and SkewTransform is far simpler than
using the MatrixTransform and trying to work out the right matrix for the
operation you want to perform. When you perform a series of transforms
with the TransformGroup, Silverlight fuses your transforms together into a
single MatrixTransform, ensuring optimal performance.

Note All transforms have automatic change notification support. If you
change a transform that’s being used in a shape, the shape will redraw
itself immediately.

224 Silverlight 2 Visual Essentials

Transforms are one of those quirky concepts that turn out to be extremely
useful in a variety of different contexts. Some examples include the
following:
 Angling a shape: Using the RotateTransform, you can turn your coordinate

system to create certain shapes more easily.
 Repeating a shape: Many drawings are built using a similar shape in several

different places. Using a transform, you can take a shape and then move it,
rotate it, resize it, and so on.

Tip In order to use the same shape in multiple places, you’ll need to
duplicate the shape in your markup (which isn’t ideal), use code (to create
the shape programmatically), or use the Path shape described in Chapter 6.
The Path shape accepts Geometry objects, and you can store a geometry
object as a resource so it can be reused throughout your markup.

 Dynamic effects and animation: You can create a number of sophisticated
effects with the help of a transform, such as rotating a shape, moving it from
one place to another, and warping it dynamically.

Note Using the tools of Silverlight graphics, you can implement other
effects, like glows and shadows, which use multiple layers of gradient fills.
You can find one example at
http://blogs.msdn.com/timrule/archive/2008/04/21/shadow-effect.aspx.

http://blogs.msdn.com/timrule/archive/2008/04/21/shadow-effect.aspx

 Silverlight 2 Visual Essentials 225

The Last Word
It’s important to understand the plumbing behind 2D graphics, because it
makes it far easier for you to manipulate them. For example, you can alter a
standard 2D graphic by modifying the brushes used to paint various shapes,
applying transforms to individual geometries, or altering the opacity or
transform of an entire layer of shapes. More dramatically, you can add,
remove, or alter individual geometries. These techniques can be easily
combined with the animation. For example, it’s easy to rotate a Geometry
object by modifying the Angle property of a RotateTransform, fade a layer of
shapes into existence using DrawingGroup.Opacity, or create a swirling
gradient effect by animating a LinearGradientBrush that paints the fill for a
GeometryDrawing.

 Silverlight 2 Visual Essentials 227

Chapter 8: Animation
Animation allows you to create truly dynamic user interfaces. It’s often
used to apply effects—for example, icons that grow when you move over
them, logos that spin, text that scrolls into view, and so on. Sometimes
these effects seem like excessive glitz. But used properly, animations can
enhance an application in a number of ways. They can make an application
seem more responsive, natural, and intuitive. (For example, a button that
slides in when you click it feels like a real, physical button—not just
another gray rectangle.) Animations can also draw attention to important
elements and guide the user through transitions to new content. (For
example, an application could advertise new content with a twinkling,
blinking, or pulsing icon.)
Animations are a core part of the Silverlight model. That means you don’t
need to use timers and event handling code to put them into action. Instead,
you can create them declaratively, configure them using one of a handful of
classes, and put them into action without writing a single line of C# code.
Animations also integrate themselves seamlessly into ordinary Silverlight
pages. For example, if you animate a button so it drifts around the page, the
button still behaves like a button. It can be styled, it can receive focus, and
it can be clicked to fire off the typical event handling code. This is what
separates animation from traditional media files, such as video. When you
put a video page in your application, it’s a completely separate region of
your application—it’s able to play video content, but it’s not user
interactive.

228 Silverlight 2 Visual Essentials

Note Silverlight animation is a scaled-down version of the WPF
animation system. It keeps the same conceptual framework, the same
model for defining animations with animation classes, and the same
storyboard system. However, WPF developers will find some key
differences, particularly in the way that animations are created and started
in code. (For example, Silverlight elements lack the built-in
BeginAnimation() method that they have in WPF.)

Understanding Silverlight Animation
Often, an animation is thought of as a series of frames. To perform the
animation, these frames are shown one after the other, like a stop-motion
video.
Silverlight animations use a dramatically different model. Essentially, a
Silverlight animation is simply a way to modify the value of a dependency
property over an interval of time. For example, to make a button that grows
and shrinks, you can modify its Width property in an animation. To make it
shimmer, you could change the properties of the LinearGradientBrush that it
uses for its background. The secret to creating the right animation is
determining what properties you need to modify.
If you want to make other changes that can’t be made by modifying a
property, you’re out of luck. For example, you can’t add or remove
elements as part of animation. Similarly, you can’t ask Silverlight to
perform a transition between a starting scene and an ending scene
(although some crafty workarounds can simulate this effect). And finally,
you can use animation only with a dependency property, because only
dependency properties use the dynamic property resolution system that
takes animations into account.
At first glance, the property-focused nature of Silverlight animations seems
terribly limiting. However, as you work with Silverlight, you’ll find that

 Silverlight 2 Visual Essentials 229

it’s surprisingly capable. In fact, you can create a wide range of animated
effects using common properties that every element supports.

GOING BEYOND SILVERLIGHT ANIMATION
That said, there are some cases where the property-based animation
system won’t work. As a rule of thumb, the property-based animation
is a great way to add dynamic effects to an otherwise ordinary
application (like buttons that glow, pictures that expand when you
move over them, and so on). However, if you need to use animations
as part of the core purpose of your application and you want them to
continue running over the lifetime of your application, you may need
something more flexible and more powerful. For example, if you’re
creating a complex arcade game or using physics calculations to
model collisions, you’ll need greater control over the animation.

Unfortunately, Silverlight doesn’t have an option for frame-based
animation, so you’ll be forced to create this sort of application the
old-fashioned way—by looping endlessly, being careful to modify your
visuals and check for user input after each iteration. You can see an
example of this technique with the ball collision simulator at
http://bubblemark.com.

The Rules of Animation
In order to understand Silverlight animation, you need to understand the
following key rules:
 Silverlight animations are time-based: Thus, you set the initial state, the

final state, and the duration of your animation. Silverlight calculates the
frame rate.

 Animations act on properties: That means a Silverlight animation can do
only one thing: modify the value of a property over an interval of time. This
sounds like a significant limitation (and it many ways it is), but there’s a
surprisingly large range of effects you can create by simply modifying
properties.

http://bubblemark.com

230 Silverlight 2 Visual Essentials

 Every data type requires a different animation class: For example, the
Button.Width property uses the double data type. To animate it, you use the
DoubleAnimation class. If you want to modify the color that’s used to paint
the background of your Canvas, you need to use the ColorAnimation class.

Silverlight has relatively few animation classes, so you’re limited in the
data types you can use. At present, you can use animations to modify
properties with the following data types: double, object, Color, and Point.
However, you can also craft your own animation classes that work for
different data types—all you need to do is derive from
System.Windows.Media.Animation and indicate how the value should change
as time passes.
Many data types don’t have a corresponding animation class because it
wouldn’t be practical. A prime example is enumerations. For example, you
can control how an element is placed in a layout panel using the
HorizontalAlignment property, which takes a value from the
HorizontalAlignment enumeration. However, the HorizontalAlignment
enumeration allows you to choose between only four values (Left, Right,
Center, and Stretch), which greatly limits its use in an animation. Although
you can swap between one orientation and another, you can’t smoothly
transition an element from one alignment to another. For that reason,
there’s no animation class for the HorizontalAlignment data type. You can
build one yourself, but you’re still constrained by the four values of the
enumeration.
Reference types are not usually animated. However, their subproperties are.
For example, all content controls sport a Background property that allows
you to set a Brush object that’s used to paint the background. It’s rarely
efficient to use animation to switch from one brush to another, but you can

 Silverlight 2 Visual Essentials 231

use animation to vary the properties of a brush. For example, you could
vary the Color property of a SolidColorBrush (using the ColorAnimation
class) or the Offset property of a GradientStop in a LinearGradientBrush
(using the DoubleAnimation class). This extends the reach of Silverlight
animation, allowing you to animate specific aspects of an element’s
appearance.

The Last Word
This chapter should have given you a basic understanding of Silverlight
animation capabilities and the rules for animation. That pretty much wraps
up this book. I hope you have gotten a feel for the visual elements of
Silverlight and that this has been a helpful introduction.

232 Silverlight 2 Visual Essentials

Related Titles
Ghosh, Jit, Scherotter, Michael, Silverlight 2 Recipes: A Problem-Solution
Approach, Berkeley, CA: Apress, 2008
MacDonald, Matthew, Pro Silverlight 2, Berkeley, CA: Apress, 2008
MacDonald, Matthew, Pro WPF: Windows Presentation Foundation in
.NET 3.0, Berkeley, CA: Apress, 2007

Copyright
Silverlight 2 Visual Essentials

© 2008 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (electronic): 978-1-4302-1583-7

ISBN-13 (paperback): 978-1-4302-1582-0

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233
Spring Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-
Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-
ny.com, or visit http://www.springer-ny.com. Outside the United States: fax +49 6221 345229,
e-mail orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2855 Telegraph Ave, Suite
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or
visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor Apress
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in this work.

mailto:orders@springer-ny.com
mailto:orders@springer-ny.com
mailto:orders@springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
http://www.springer.de
mailto:info@apress.com
http://www.apress.com

	Silverlight 2 Visual Essentials
	Contents
	Chapter 1: Introducing Silverlight
	Understanding Silverlight
	Silverlight vs. Flash
	Silverlight 1.0 and 2.0
	Silverlight and WPF

	Silverlight and Visual Studio
	Understanding Silverlight Web Sites
	Creating a Silverlight Project
	The Anatomy of a Silverlight Application
	Creating a Simple Silverlight Page
	Adding Event Handling Code
	Browsing the Silverlight Class Libraries
	Testing a Silverlight Application
	Creating an ASP.NET Web Site with Silverlight Content

	Silverlight Compilation and Deployment
	Compiling a Silverlight Assembly
	Deploying a Silverlight Assembly
	The HTML Entry Page
	Sizing the Silverlight Content Region
	Configuring the Silverlight Content Region
	Displaying Alternative Content

	The Application Manifest

	The Last Word

	Chapter 2: Layout
	The Layout Containers
	The Panel Background
	Borders

	Simple Layout with the StackPanel
	Layout Properties
	Alignment
	Margin
	Minimum, Maximum, and Explicit Sizes

	The Grid
	Fine-Tuning Rows and Columns
	Nesting Layout Containers
	Spanning Rows and Columns
	Using the GridSplitter

	Coordinate-Based Layout with the Canvas
	The Page
	Scrolling
	Scaling
	Full Screen

	Navigation
	Loading Child User Controls
	Hiding Elements

	The Last Word

	Chapter 3: Dependency Properties and Routed Events
	Dependency Properties
	Defining and Registering a Dependency Property
	The Property Wrapper

	Dynamic Value Resolution
	Attached Properties

	Routed Events
	The Core Element Events
	Event Bubbling
	Mouse Movements
	Capturing the Mouse
	Mouse Cursors
	Key Presses
	Key Modifiers
	Focus

	The Last Word

	Chapter 4: Elements
	The Silverlight Elements
	Static Text
	Font Properties
	Standard Fonts
	Font Embedding

	Underlining
	Runs
	Wrapping Text

	Content Controls
	The Content Property
	Aligning Content
	Buttons
	The HyperlinkButton
	The ToggleButton and RepeatButton
	The CheckBox
	The RadioButton

	Tooltips
	The ToolTip Control
	The ToolTipService
	The Popup

	List Controls
	Text Controls
	Text Selection
	The WatermarkedTextBox

	Range-Based Controls
	Date Controls
	The Last Word

	Chapter 5: The Application Model
	Application Events
	Application Startup
	Application Shutdown
	Unhandled Exceptions
	XAML Resources

	Application Tasks
	Accessing the Current Application
	Initialization Parameters
	Changing the Page
	Retaining Page State
	Browser History

	Splash Screens

	Resources
	Class Library Assemblies
	Using Resources in an Assembly
	Downloading Assemblies on Demand

	The Last Word

	Chapter 6: Shapes and Geometries
	Basic Shapes
	The Shape Classes
	Rectangle and Ellipse
	Sizing and Placing Shapes
	Line
	Polyline
	Polygon
	Line Caps and Line Joins
	Dashes

	Paths and Geometries
	Line, Rectangle, and Ellipse Geometries
	Combining Shapes with GeometryGroup
	Curves and Lines with PathGeometry
	Straight Lines
	Arcs
	Bézier Curves

	The Geometry Mini-Language
	Clipping with Geometry

	Exporting Clip Art
	Expression Design
	Conversion
	Save or Print to XPS

	The Last Word

	Chapter 7: Brushes and Transforms
	Brushes
	Transparency
	Making the Silverlight Control Transparent

	Transforms
	The Last Word

	Chapter 8: Animation
	Understanding Silverlight Animation
	The Rules of Animation

	The Last Word

	Related Titles
	Copyright

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

